Long-chain crosslinker-induced patterning on an elastic polymer film for robust and reversible information encryption/decryption.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qitong He, Qiuhua Zhao, Lidong Zhang
{"title":"Long-chain crosslinker-induced patterning on an elastic polymer film for robust and reversible information encryption/decryption.","authors":"Qitong He, Qiuhua Zhao, Lidong Zhang","doi":"10.1039/d4mh01828a","DOIUrl":null,"url":null,"abstract":"<p><p>While reversible information encryption and decryption are readily achievable with hydrogels, this process presents a significant challenge when applied to elastic polymer films. This is due to the inherent chemical stability of anhydrous polymer films which significantly increases the difficulty of information writing. In this study, we propose a solvent-free radical polymerization method for chemical patterning on the elastic film of poly(styrene-butadiene-styrene) (SBS). Unlike short chain crosslinkers-induced patterning, which increases the brittleness of the film, the long-chain crosslinkers are chemically bonded with the chains of SBS. This not only enhances the mechanical stability of film, but also improves its softness and robustness (the strength increases 1.8 times and the toughness increases 2.3 times), thereby greatly extending its durability for information encryption and decryption. When patterned with a photomask, the crosslinked regions maintain transparency upon acetone absorption, while the non-crosslinked regions become opaque due to an acetone-induced phase change. Upon removal of acetone, these opaque regions can be restored to transparency. Compared with hydrogels liable to water loss and deformation, the patterned films show greater stability, retaining pattern encryption/decryption functions after 30 days in a natural environment without special storage. The rate of this phase transition is directly related to the degree of crosslinking. Therefore, by adjusting the degree of crosslinking, the patterned films can undergo multistage encryption/decryption in response to acetone, providing a promising method for information security and storage.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01828a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While reversible information encryption and decryption are readily achievable with hydrogels, this process presents a significant challenge when applied to elastic polymer films. This is due to the inherent chemical stability of anhydrous polymer films which significantly increases the difficulty of information writing. In this study, we propose a solvent-free radical polymerization method for chemical patterning on the elastic film of poly(styrene-butadiene-styrene) (SBS). Unlike short chain crosslinkers-induced patterning, which increases the brittleness of the film, the long-chain crosslinkers are chemically bonded with the chains of SBS. This not only enhances the mechanical stability of film, but also improves its softness and robustness (the strength increases 1.8 times and the toughness increases 2.3 times), thereby greatly extending its durability for information encryption and decryption. When patterned with a photomask, the crosslinked regions maintain transparency upon acetone absorption, while the non-crosslinked regions become opaque due to an acetone-induced phase change. Upon removal of acetone, these opaque regions can be restored to transparency. Compared with hydrogels liable to water loss and deformation, the patterned films show greater stability, retaining pattern encryption/decryption functions after 30 days in a natural environment without special storage. The rate of this phase transition is directly related to the degree of crosslinking. Therefore, by adjusting the degree of crosslinking, the patterned films can undergo multistage encryption/decryption in response to acetone, providing a promising method for information security and storage.

弹性聚合物薄膜上的长链交联剂诱导图图化用于稳健可逆的信息加密/解密。
虽然水凝胶可以很容易地实现可逆的信息加密和解密,但当应用于弹性聚合物薄膜时,这一过程面临着重大挑战。这是由于无水聚合物薄膜固有的化学稳定性,这大大增加了信息书写的难度。在这项研究中,我们提出了一种无溶剂自由基聚合方法在聚苯乙烯-丁二烯-苯乙烯(SBS)弹性膜上进行化学图案。与短链交联剂诱导的图案化(增加薄膜的脆性)不同,长链交联剂与SBS链化学键合。这不仅增强了薄膜的机械稳定性,而且提高了薄膜的柔软性和坚固性(强度提高1.8倍,韧性提高2.3倍),从而大大延长了薄膜的信息加密和解密的耐久性。当使用光掩膜时,交联区域在丙酮吸收时保持透明,而非交联区域由于丙酮诱导的相变而变得不透明。除去丙酮后,这些不透明的区域可以恢复透明。与易失水和变形的水凝胶相比,图案膜表现出更大的稳定性,在自然环境中无需特殊储存30天后仍能保持图案加密/解密功能。这种相变的速率与交联的程度直接相关。因此,通过调节交联度,图案膜可以响应丙酮进行多级加密/解密,为信息安全和存储提供了一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信