Acetylene semi-hydrogenation catalyzed by Pd single atoms sandwiched in zeolitic imidazolate frameworks via hydrogen activation and spillover.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yan-Ting Li, Wen-Gang Cui, Ying-Fei Huo, Lei Zhou, Xinqiang Wang, Fan Gao, Qiang Zhang, Wei Li, Tong-Liang Hu
{"title":"Acetylene semi-hydrogenation catalyzed by Pd single atoms sandwiched in zeolitic imidazolate frameworks <i>via</i> hydrogen activation and spillover.","authors":"Yan-Ting Li, Wen-Gang Cui, Ying-Fei Huo, Lei Zhou, Xinqiang Wang, Fan Gao, Qiang Zhang, Wei Li, Tong-Liang Hu","doi":"10.1039/d4mh01787k","DOIUrl":null,"url":null,"abstract":"<p><p>The semi-hydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry, and palladium-based metallic catalysts are currently employed. Unfortunately, a fairly high cost and uncontrollable over-hydrogenation impeded the application of Pd-based catalysts on a large scale. Herein, a sandwich structure single atom Pd catalyst, Z@Pd@Z, was prepared <i>via</i> impregnation exchange and epitaxial growth methods (Z stands for ZIF-8), in which Pd single atoms were stabilized by pyrrolic N in a zeolitic imidazolate framework (ZIF-8). Semi-hydrogenation of acetylene was performed and Z@Pd@Z achieved 100% acetylene conversion at 120 °C with an ethylene selectivity of more than 98.3% at an extra low Pd concentration. Z@Pd@Z exhibited a specific activity of 1872.69 mL<sub>C<sub>2</sub>H<sub>4</sub></sub> mg<sub>Pd</sub><sup>-1</sup> h<sup>-1</sup>, surpassing most of the reported Pd-based catalysts. The existence of Pd single atoms coordinated by nitrogen (Pd-N<sub>4</sub>) was verified by XAS (synchrotron X-ray absorption spectroscopy), which provided active sites for H<sub>2</sub> dissociation and the dissociated hydrogen quickly spilled over the surface of the outer ZIF layer to hydrogenate alkyne to ethene; besides, the catalytic activity could be controlled by adjusting the thickness of the outer ZIF layer. The confinement of the ZIF on Pd single-atom sites and the high energy barrier of ethylene hydrogenation were found to be responsible for the superior C<sub>2</sub>H<sub>2</sub> semi-hydrogenation activity. This work opens up valuable insights into the design of ZIF-derived single-atom catalysts for efficient acetylene selective hydrogenation.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01787k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The semi-hydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry, and palladium-based metallic catalysts are currently employed. Unfortunately, a fairly high cost and uncontrollable over-hydrogenation impeded the application of Pd-based catalysts on a large scale. Herein, a sandwich structure single atom Pd catalyst, Z@Pd@Z, was prepared via impregnation exchange and epitaxial growth methods (Z stands for ZIF-8), in which Pd single atoms were stabilized by pyrrolic N in a zeolitic imidazolate framework (ZIF-8). Semi-hydrogenation of acetylene was performed and Z@Pd@Z achieved 100% acetylene conversion at 120 °C with an ethylene selectivity of more than 98.3% at an extra low Pd concentration. Z@Pd@Z exhibited a specific activity of 1872.69 mLC2H4 mgPd-1 h-1, surpassing most of the reported Pd-based catalysts. The existence of Pd single atoms coordinated by nitrogen (Pd-N4) was verified by XAS (synchrotron X-ray absorption spectroscopy), which provided active sites for H2 dissociation and the dissociated hydrogen quickly spilled over the surface of the outer ZIF layer to hydrogenate alkyne to ethene; besides, the catalytic activity could be controlled by adjusting the thickness of the outer ZIF layer. The confinement of the ZIF on Pd single-atom sites and the high energy barrier of ethylene hydrogenation were found to be responsible for the superior C2H2 semi-hydrogenation activity. This work opens up valuable insights into the design of ZIF-derived single-atom catalysts for efficient acetylene selective hydrogenation.

在化学工业中,将炔烃半氢化成烯烃而不是烷烃具有重要意义,目前采用的是钯基金属催化剂。遗憾的是,相当高的成本和不可控的过氢化阻碍了钯基催化剂的大规模应用。本文通过浸渍交换和外延生长方法制备了一种三明治结构的单原子钯催化剂 Z@Pd@Z(Z 代表 ZIF-8),其中钯单原子被吡咯烷 N 稳定在沸石咪唑酸框架(ZIF-8)中。Z@Pd@Z 在 120 °C 时实现了 100% 的乙炔转化,在超低钯浓度下乙烯选择性超过 98.3%。Z@Pd@Z 的比活度为 1872.69 mLC2H4 mgPd-1 h-1,超过了大多数已报道的钯基催化剂。XAS(同步辐射 X 射线吸收光谱)验证了氮配位钯单原子(Pd-N4)的存在,这为 H2 离解提供了活性位点,离解的氢迅速溢出 ZIF 外层表面,将炔烃氢化为乙烯;此外,催化活性可通过调节 ZIF 外层的厚度来控制。研究发现,ZIF 对钯单原子位点的限制和乙烯氢化的高能垒是 C2H2 半氢化活性优异的原因。这项研究为设计 ZIF 衍生单原子催化剂以实现高效乙炔选择性氢化提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信