Evaluation of Silica and Bioglass Nanomaterials in Pulp-like Living Materials.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Daline Mbitta Akoa, Anthony Avril, Christophe Hélary, Anne Poliard, Thibaud Coradin
{"title":"Evaluation of Silica and Bioglass Nanomaterials in Pulp-like Living Materials.","authors":"Daline Mbitta Akoa, Anthony Avril, Christophe Hélary, Anne Poliard, Thibaud Coradin","doi":"10.1021/acsbiomaterials.4c01898","DOIUrl":null,"url":null,"abstract":"<p><p>Although silicon is a widespread constituent in dental materials, its possible influence on the formation and repair of teeth remains largely unexplored. Here, we studied the effect of two silicic acid-releasing nanomaterials, silica and bioglass, on a living model of pulp consisting of dental pulp stem cells seeded in dense type I collagen hydrogels. Silica nanoparticles and released silicic acid had little effect on cell viability and mineralization efficiency but impacted metabolic activity, delayed matrix remodeling, and led to heterogeneous cell distribution. Bioglass improved cell metabolic activity and led to a homogeneous dispersion of cells and mineral deposits within the hydrogel. These results suggest that the presence of calcium ions in bioglass is not only favorable to cell proliferation but can also counterbalance the negative effects of silicon. Both chemical and biological processes should therefore be considered when investigating the effects of silicon-containing materials on dental tissues.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01898","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Although silicon is a widespread constituent in dental materials, its possible influence on the formation and repair of teeth remains largely unexplored. Here, we studied the effect of two silicic acid-releasing nanomaterials, silica and bioglass, on a living model of pulp consisting of dental pulp stem cells seeded in dense type I collagen hydrogels. Silica nanoparticles and released silicic acid had little effect on cell viability and mineralization efficiency but impacted metabolic activity, delayed matrix remodeling, and led to heterogeneous cell distribution. Bioglass improved cell metabolic activity and led to a homogeneous dispersion of cells and mineral deposits within the hydrogel. These results suggest that the presence of calcium ions in bioglass is not only favorable to cell proliferation but can also counterbalance the negative effects of silicon. Both chemical and biological processes should therefore be considered when investigating the effects of silicon-containing materials on dental tissues.

二氧化硅和生物玻璃纳米材料在纸浆类生物材料中的应用。
虽然硅是牙科材料中的一种广泛成分,但它对牙齿形成和修复可能产生的影响在很大程度上仍未被探索。在这里,我们研究了两种释放硅酸的纳米材料--二氧化硅和生物玻璃--对牙髓干细胞播种在致密 I 型胶原水凝胶中的活体牙髓模型的影响。二氧化硅纳米颗粒和释放的硅酸对细胞存活率和矿化效率影响不大,但影响了新陈代谢活动,延缓了基质重塑,并导致细胞分布不均。生物玻璃改善了细胞的代谢活性,并使细胞和矿物质沉积物在水凝胶中均匀分布。这些结果表明,生物玻璃中钙离子的存在不仅有利于细胞增殖,还能抵消硅的负面影响。因此,在研究含硅材料对牙科组织的影响时,应同时考虑化学和生物过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信