Porous Organic Polymers Incorporating Shape-persistent Cyclobenzoin Macrocycles for Organic Solvent Separation

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Timur Ashirov, Jay Lim, Alexandra Robles, Thamon Puangsamlee, Patrick W. Fritz, Aurelien Crochet, Xiqu Wang, Connor Hewson, Paul Lacomi, Ognjen Miljanić, Ali Coskun
{"title":"Porous Organic Polymers Incorporating Shape-persistent Cyclobenzoin Macrocycles for Organic Solvent Separation","authors":"Timur Ashirov, Jay Lim, Alexandra Robles, Thamon Puangsamlee, Patrick W. Fritz, Aurelien Crochet, Xiqu Wang, Connor Hewson, Paul Lacomi, Ognjen Miljanić, Ali Coskun","doi":"10.1002/anie.202423809","DOIUrl":null,"url":null,"abstract":"The recovery and separation of organic solvents is highly important for the chemical industry and environmental protection. In this context, porous organic polymers (POPs) have significant potential owing to the possibility of integrating shape-persistent macrocyclic units with high guest selectivity. Here, we report the synthesis of a macrocyclic porous organic polymer (np-POP) and the corresponding model compound by reacting cyclotetrabenzil naphthalene octaketone macrocycle with 1,2,4,5-tetraaminobenzene and 1,2-diaminobenzene, respectively, under solvothermal conditions. Co-crystallization of the macrocycle and the model compound with various solvent molecules revealed their size-selective inclusion within the macrocycle. Building on this finding, the np-POP with a hierarchical pore structure and a surface area of 579 m² g−1 showed solvent uptake strongly correlated with their kinetic diameters. Solvents with kinetic diameters below 0.6 nm—such as acetonitrile and dichloromethane—showed high uptake capacities exceeding 7 mmol g−1. Xylene separation tests revealed a high overall uptake (~34 wt%), with o-xylene displaying a significantly lower uptake (~10 wt% less than other isomers), demonstrating the possibility of size and shape selective separation of organic solvents.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"24 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423809","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The recovery and separation of organic solvents is highly important for the chemical industry and environmental protection. In this context, porous organic polymers (POPs) have significant potential owing to the possibility of integrating shape-persistent macrocyclic units with high guest selectivity. Here, we report the synthesis of a macrocyclic porous organic polymer (np-POP) and the corresponding model compound by reacting cyclotetrabenzil naphthalene octaketone macrocycle with 1,2,4,5-tetraaminobenzene and 1,2-diaminobenzene, respectively, under solvothermal conditions. Co-crystallization of the macrocycle and the model compound with various solvent molecules revealed their size-selective inclusion within the macrocycle. Building on this finding, the np-POP with a hierarchical pore structure and a surface area of 579 m² g−1 showed solvent uptake strongly correlated with their kinetic diameters. Solvents with kinetic diameters below 0.6 nm—such as acetonitrile and dichloromethane—showed high uptake capacities exceeding 7 mmol g−1. Xylene separation tests revealed a high overall uptake (~34 wt%), with o-xylene displaying a significantly lower uptake (~10 wt% less than other isomers), demonstrating the possibility of size and shape selective separation of organic solvents.
用于有机溶剂分离的含有形状持久性环安息香大环的多孔有机聚合物
有机溶剂的回收分离对化工和环境保护具有重要意义。在这种情况下,多孔有机聚合物(POPs)具有很大的潜力,因为它可以集成具有高客体选择性的形状持久性大环单元。本文报道了在溶剂热条件下,环四苯并萘八烯酮大环分别与1,2,4,5-四氨基苯和1,2-二氨基苯反应,合成了一种大环多孔有机聚合物(np-POP)和相应的模型化合物。大环和模型化合物与各种溶剂分子的共结晶揭示了它们在大环内的尺寸选择性包裹体。基于这一发现,具有分层孔结构和579 m²g−1表面积的np-POP的溶剂吸收率与其动力学直径密切相关。动力学直径小于0.6 nm的溶剂,如乙腈和二氯甲烷,表现出超过7 mmol g−1的高吸收能力。二甲苯的分离试验显示其总体吸收率很高(约34 wt%),邻二甲苯的吸收率明显较低(比其他异构体低约10 wt%),这表明有机溶剂的大小和形状选择性分离是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信