Kirti, Smit J. Balar, Ankush V. Biradar, Divesh N. Srivastava
{"title":"Empowering Sustainable Energy: Lead-Coated Plastic Chip Electrodes for Effective CO2 Reduction","authors":"Kirti, Smit J. Balar, Ankush V. Biradar, Divesh N. Srivastava","doi":"10.1021/acs.langmuir.4c04407","DOIUrl":null,"url":null,"abstract":"Electrochemical CO<sub>2</sub> reduction is crucial in combatting climate change and advancing sustainable energy practices by converting CO<sub>2</sub> into valuable chemicals and fuels, thereby reducing atmospheric CO<sub>2</sub> levels and enabling the storage and utilization of renewable energy from intermittent sources like solar and wind. The selection of electrode materials and platform design plays a critical role in enhancing reaction efficiency and product selectivity during CO<sub>2</sub> reduction. Various metals, both in their solid forms and coated over substrates, have been used in electrochemical CO<sub>2</sub>RR. In this study, we utilized electrodeposition to modify the plastic chip electrode (PCE), depositing lead metal onto it through a galvanostatic method at a current density of 100 mA/cm<sup>2</sup> from a 0.1 M Pb(NO<sub>3</sub>)<sub>2</sub> aqueous solution. Pb-coated electrodes are crucial due to their high selectivity, efficiency, cost-effectiveness, and flexibility as electrode materials. Their good stability and durability make them ideal for long-term applications. The electrochemical reduction of carbon dioxide using the Pb/PCE electrode as the cathode has been investigated, focusing on assessing how different electrolysis potentials influenced the faradaic efficiency of formic acid production. Our results demonstrated that the peak faradaic efficiency, reaching 86.2%, was achieved at −0.7 V vs RHE over a 5 h electrolysis period.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"12 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04407","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical CO2 reduction is crucial in combatting climate change and advancing sustainable energy practices by converting CO2 into valuable chemicals and fuels, thereby reducing atmospheric CO2 levels and enabling the storage and utilization of renewable energy from intermittent sources like solar and wind. The selection of electrode materials and platform design plays a critical role in enhancing reaction efficiency and product selectivity during CO2 reduction. Various metals, both in their solid forms and coated over substrates, have been used in electrochemical CO2RR. In this study, we utilized electrodeposition to modify the plastic chip electrode (PCE), depositing lead metal onto it through a galvanostatic method at a current density of 100 mA/cm2 from a 0.1 M Pb(NO3)2 aqueous solution. Pb-coated electrodes are crucial due to their high selectivity, efficiency, cost-effectiveness, and flexibility as electrode materials. Their good stability and durability make them ideal for long-term applications. The electrochemical reduction of carbon dioxide using the Pb/PCE electrode as the cathode has been investigated, focusing on assessing how different electrolysis potentials influenced the faradaic efficiency of formic acid production. Our results demonstrated that the peak faradaic efficiency, reaching 86.2%, was achieved at −0.7 V vs RHE over a 5 h electrolysis period.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).