Hierarchical rGO‐Based Triboelectric Sensors Enable Motion Monitoring and Trajectory Tracking

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sheng Liu, Weiming Qing, Jiacheng Zhang, Sihua Liao, Qiong Wang, Kexiang Wei, Wenyuan Yan, Linchuan Zhao, Hongxiang Zou
{"title":"Hierarchical rGO‐Based Triboelectric Sensors Enable Motion Monitoring and Trajectory Tracking","authors":"Sheng Liu, Weiming Qing, Jiacheng Zhang, Sihua Liao, Qiong Wang, Kexiang Wei, Wenyuan Yan, Linchuan Zhao, Hongxiang Zou","doi":"10.1002/adfm.202419459","DOIUrl":null,"url":null,"abstract":"Flexible sensors are increasingly recognized for their transformative potential in wearable electronic devices, medical monitoring, and human‐computer interaction. Despite the advancements, developing a flexible sensor array with a simple structure and large area preparation for effective signal sensing and monitoring capabilities remains challenging. In this study, a hierarchical rGO‐based flexible triboelectric sensor (HG‐FTS) is scalably prepared by a simple blade‐coating approach, in which the nitrogen‐doped reduced graphene oxide (rGO) sheet is hierarchically deposited in a polydimethylsiloxane (PDMS) layer. The flexible triboelectric sensor performed in single electrode mode not only demonstrates exceptional reliability and consistency but also achieves a maximum voltage of ≈129 V and a power density of ≈0.5 W m<jats:sup>−2</jats:sup>. These characteristics enable the real‐time monitoring of human physiological signals and joint motion with high fidelity. Furthermore, an intelligent human‐computer interactive control system is developed using the HG‐FTS, featuring a digital array touch screen with a rectangular pattern. The build system can be successfully used for pressure sensing, object shape recognition, and trajectory tracking. This work provides a viable solution to the large area preparation and high‐performance flexible sensor manufacturing and demonstrates the potential application of HG‐FTS in human‐computer interaction, signal monitoring, and intelligent sensing.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"50 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202419459","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible sensors are increasingly recognized for their transformative potential in wearable electronic devices, medical monitoring, and human‐computer interaction. Despite the advancements, developing a flexible sensor array with a simple structure and large area preparation for effective signal sensing and monitoring capabilities remains challenging. In this study, a hierarchical rGO‐based flexible triboelectric sensor (HG‐FTS) is scalably prepared by a simple blade‐coating approach, in which the nitrogen‐doped reduced graphene oxide (rGO) sheet is hierarchically deposited in a polydimethylsiloxane (PDMS) layer. The flexible triboelectric sensor performed in single electrode mode not only demonstrates exceptional reliability and consistency but also achieves a maximum voltage of ≈129 V and a power density of ≈0.5 W m−2. These characteristics enable the real‐time monitoring of human physiological signals and joint motion with high fidelity. Furthermore, an intelligent human‐computer interactive control system is developed using the HG‐FTS, featuring a digital array touch screen with a rectangular pattern. The build system can be successfully used for pressure sensing, object shape recognition, and trajectory tracking. This work provides a viable solution to the large area preparation and high‐performance flexible sensor manufacturing and demonstrates the potential application of HG‐FTS in human‐computer interaction, signal monitoring, and intelligent sensing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信