Critically assessing sodium-ion technology roadmaps and scenarios for techno-economic competitiveness against lithium-ion batteries

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS
Adrian Yao, Sally M. Benson, William C. Chueh
{"title":"Critically assessing sodium-ion technology roadmaps and scenarios for techno-economic competitiveness against lithium-ion batteries","authors":"Adrian Yao, Sally M. Benson, William C. Chueh","doi":"10.1038/s41560-024-01701-9","DOIUrl":null,"url":null,"abstract":"<p>Sodium-ion batteries have garnered notable attention as a potentially low-cost alternative to lithium-ion batteries, which have experienced supply shortages and price volatility for key minerals. Here we assess their techno-economic competitiveness against incumbent lithium-ion batteries using a modelling framework incorporating componential learning curves constrained by minerals prices and engineering design floors. We compare projected sodium-ion and lithium-ion price trends across over 6,000 scenarios while varying Na-ion technology development roadmaps, supply chain scenarios, market penetration and learning rates. Assuming that substantial progress can be made along technology roadmaps via targeted research and development, we identify several sodium-ion pathways that might reach cost-competitiveness with low-cost lithium-ion variants in the 2030s. In addition, we show that timelines are highly sensitive to movements in critical minerals supply chains—namely that of lithium, graphite and nickel. Our modelled outcomes suggest that being price advantageous against low-cost lithium-ion variants in the near term is challenging and increasing sodium-ion energy densities to decrease materials intensity is among the most impactful ways to improve competitiveness.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"21 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01701-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion batteries have garnered notable attention as a potentially low-cost alternative to lithium-ion batteries, which have experienced supply shortages and price volatility for key minerals. Here we assess their techno-economic competitiveness against incumbent lithium-ion batteries using a modelling framework incorporating componential learning curves constrained by minerals prices and engineering design floors. We compare projected sodium-ion and lithium-ion price trends across over 6,000 scenarios while varying Na-ion technology development roadmaps, supply chain scenarios, market penetration and learning rates. Assuming that substantial progress can be made along technology roadmaps via targeted research and development, we identify several sodium-ion pathways that might reach cost-competitiveness with low-cost lithium-ion variants in the 2030s. In addition, we show that timelines are highly sensitive to movements in critical minerals supply chains—namely that of lithium, graphite and nickel. Our modelled outcomes suggest that being price advantageous against low-cost lithium-ion variants in the near term is challenging and increasing sodium-ion energy densities to decrease materials intensity is among the most impactful ways to improve competitiveness.

Abstract Image

批判性评估钠技术路线图和场景对锂离子电池技术经济竞争力
钠离子电池作为一种潜在的低成本锂离子电池替代品引起了人们的关注,锂离子电池经历了供应短缺和关键矿物价格波动。在这里,我们使用一个模型框架来评估它们与现有锂离子电池的技术经济竞争力,该模型框架包含受矿物价格和工程设计下限约束的组件学习曲线。我们比较了超过6000种情况下钠离子和锂离子电池的价格趋势,同时也比较了不同的钠离子技术发展路线图、供应链情况、市场渗透率和学习率。假设通过有针对性的研究和开发可以沿着技术路线图取得实质性进展,我们确定了几种钠离子途径,这些途径可能在21世纪30年代与低成本的锂离子变体相比具有成本竞争力。此外,我们还表明,时间表对关键矿物供应链(即锂、石墨和镍)的变动高度敏感。我们的模型结果表明,在短期内对低成本锂离子变体具有价格优势是具有挑战性的,增加钠离子能量密度以降低材料强度是提高竞争力的最有效方法之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信