Modeling non-stationary 1-hour extreme rainfall for Indian river basins under changing climate

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL
Degavath Vinod, Amai Mahesha
{"title":"Modeling non-stationary 1-hour extreme rainfall for Indian river basins under changing climate","authors":"Degavath Vinod, Amai Mahesha","doi":"10.1016/j.jhydrol.2025.132669","DOIUrl":null,"url":null,"abstract":"India’s complex topography and the increasing influence of climate change have exacerbated the challenges of modeling 1-hour non-stationary extreme rainfall events. Prior studies have indicated rising intensities of such events, particularly in coastal and urban areas. This study addresses these issues by developing 155 basin-specific non-stationary surface response models, incorporating geographical, climatic, and temporal covariates. Using 13 Max-Stable Process (MSP) characterizations, extreme rainfall variability across 11 major river basins and three-time scales were effectively modeled. The Brown-Resnick, Geometric-Gaussian, and Extremal-t models demonstrated varying effectiveness across regions. The findings emphasize the critical role of region-specific analysis in water resource management and disaster preparedness, where the high temporal resolution datasets are limited for the point process-based models. The global processes and regional climate change are found to predominantly influence 1-hour extreme rainfall across the majority of river basins in India.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"25 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2025.132669","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

India’s complex topography and the increasing influence of climate change have exacerbated the challenges of modeling 1-hour non-stationary extreme rainfall events. Prior studies have indicated rising intensities of such events, particularly in coastal and urban areas. This study addresses these issues by developing 155 basin-specific non-stationary surface response models, incorporating geographical, climatic, and temporal covariates. Using 13 Max-Stable Process (MSP) characterizations, extreme rainfall variability across 11 major river basins and three-time scales were effectively modeled. The Brown-Resnick, Geometric-Gaussian, and Extremal-t models demonstrated varying effectiveness across regions. The findings emphasize the critical role of region-specific analysis in water resource management and disaster preparedness, where the high temporal resolution datasets are limited for the point process-based models. The global processes and regional climate change are found to predominantly influence 1-hour extreme rainfall across the majority of river basins in India.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信