{"title":"Modeling non-stationary 1-hour extreme rainfall for Indian river basins under changing climate","authors":"Degavath Vinod, Amai Mahesha","doi":"10.1016/j.jhydrol.2025.132669","DOIUrl":null,"url":null,"abstract":"India’s complex topography and the increasing influence of climate change have exacerbated the challenges of modeling 1-hour non-stationary extreme rainfall events. Prior studies have indicated rising intensities of such events, particularly in coastal and urban areas. This study addresses these issues by developing 155 basin-specific non-stationary surface response models, incorporating geographical, climatic, and temporal covariates. Using 13 Max-Stable Process (MSP) characterizations, extreme rainfall variability across 11 major river basins and three-time scales were effectively modeled. The Brown-Resnick, Geometric-Gaussian, and Extremal-t models demonstrated varying effectiveness across regions. The findings emphasize the critical role of region-specific analysis in water resource management and disaster preparedness, where the high temporal resolution datasets are limited for the point process-based models. The global processes and regional climate change are found to predominantly influence 1-hour extreme rainfall across the majority of river basins in India.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"25 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2025.132669","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
India’s complex topography and the increasing influence of climate change have exacerbated the challenges of modeling 1-hour non-stationary extreme rainfall events. Prior studies have indicated rising intensities of such events, particularly in coastal and urban areas. This study addresses these issues by developing 155 basin-specific non-stationary surface response models, incorporating geographical, climatic, and temporal covariates. Using 13 Max-Stable Process (MSP) characterizations, extreme rainfall variability across 11 major river basins and three-time scales were effectively modeled. The Brown-Resnick, Geometric-Gaussian, and Extremal-t models demonstrated varying effectiveness across regions. The findings emphasize the critical role of region-specific analysis in water resource management and disaster preparedness, where the high temporal resolution datasets are limited for the point process-based models. The global processes and regional climate change are found to predominantly influence 1-hour extreme rainfall across the majority of river basins in India.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.