Lucia Marziotte, Ana J. P. Carcedo, Laura Mayor, P. V. Vara Prasad, Joaquín A. Peraza, Ignacio A. Ciampitti
{"title":"An in-silico approach exploring sorghum source:sink balance across sorghum hybrids: How many leaves are enough?","authors":"Lucia Marziotte, Ana J. P. Carcedo, Laura Mayor, P. V. Vara Prasad, Joaquín A. Peraza, Ignacio A. Ciampitti","doi":"10.1002/csc2.21449","DOIUrl":null,"url":null,"abstract":"<p>Previous literature documented an imbalance for sorghum [<i>Sorghum bicolor</i> (L.) Moench] between source (leaves) and sink (grains), favoring the source. Therefore, reducing leaf number, anticipating maturity, and placing the dry-down with more favorable environment might be advantageous for producers to fit another crop in the rotation. The aims of this study were to (1) evaluate via in-silico the effects of leaf removal during the grain filling and (2) explore those impacts using a field dataset for sorghum yield. For the first objective, the APSIM (Agricultural Production Systems Simulator) sorghum model was tested with four hybrids across 12 locations in the United States (2015–2023) resulting in an RRMSE (relative root mean squared error) of 25% for yield. As a second step, an APSIM defoliation module was developed using field data of one site-year, demonstrating an RRMSE of 17% for yield. As a last step, the model was used to simulate the effect of sequential defoliations on yield, across 38 years of weather data (1984–2022), without showing any yield penalties when removing up to four leaves after flowering. Leaf area removal after flowering indicated a positive imbalance in source:sink ratio (i.e., source excess). For the second objective, a field dataset from 21 sorghum hybrids with different attainable leaf numbers and cycle duration did not result in significant yield differences. Early maturity hybrids with fewer leaves give farmers the opportunity to intensify crop sequences. Less focus in sorghum improvement for early relative to late maturing hybrids has been reported; therefore, there is still ample room for future yield gains.</p>","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"65 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/csc2.21449","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/csc2.21449","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous literature documented an imbalance for sorghum [Sorghum bicolor (L.) Moench] between source (leaves) and sink (grains), favoring the source. Therefore, reducing leaf number, anticipating maturity, and placing the dry-down with more favorable environment might be advantageous for producers to fit another crop in the rotation. The aims of this study were to (1) evaluate via in-silico the effects of leaf removal during the grain filling and (2) explore those impacts using a field dataset for sorghum yield. For the first objective, the APSIM (Agricultural Production Systems Simulator) sorghum model was tested with four hybrids across 12 locations in the United States (2015–2023) resulting in an RRMSE (relative root mean squared error) of 25% for yield. As a second step, an APSIM defoliation module was developed using field data of one site-year, demonstrating an RRMSE of 17% for yield. As a last step, the model was used to simulate the effect of sequential defoliations on yield, across 38 years of weather data (1984–2022), without showing any yield penalties when removing up to four leaves after flowering. Leaf area removal after flowering indicated a positive imbalance in source:sink ratio (i.e., source excess). For the second objective, a field dataset from 21 sorghum hybrids with different attainable leaf numbers and cycle duration did not result in significant yield differences. Early maturity hybrids with fewer leaves give farmers the opportunity to intensify crop sequences. Less focus in sorghum improvement for early relative to late maturing hybrids has been reported; therefore, there is still ample room for future yield gains.
期刊介绍:
Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.