Zhihua Song, Qing Yang, Biying Dong, Shengjie Wang, Jingyi Xue, Ni Liu, Xiaomiao Zhou, Na Li, Abhaya M. Dandekar, Lailiang Cheng, Dong Meng, Yujie Fu
{"title":"Nanopore RNA direct sequencing identifies that m6A modification is essential for sorbitol-controlled resistance to Alternaria alternata in apple","authors":"Zhihua Song, Qing Yang, Biying Dong, Shengjie Wang, Jingyi Xue, Ni Liu, Xiaomiao Zhou, Na Li, Abhaya M. Dandekar, Lailiang Cheng, Dong Meng, Yujie Fu","doi":"10.1016/j.devcel.2024.12.033","DOIUrl":null,"url":null,"abstract":"Sorbitol, a main photosynthate and transport carbohydrate in all tree fruit species in Rosaceae, acts as a signal controlling resistance against <em>Alternaria (A.) alternata</em> in apple by altering the expression of the <em>MdNLR</em>16 resistance gene via the MdWRKY79 transcription factor. However, it is not known if <em>N</em><sup>6</sup>-methyladenosine (m<sup>6</sup>A) methylation of the mRNAs of these genes participates in the process. Here, we found that decreased sorbitol synthesis in apple leaves leads to a transcriptome-wide reduction in the m<sup>6</sup>A modification, with fewer transcripts containing two or more methylation sites. We identified two methyltransferases, <em>MdVIR1</em> and <em>MdVIR2</em>, that respond to sorbitol and <em>A. alternata</em> inoculation and positively control resistance to <em>A. alternata</em>. MdVIR1 and MdVIR2 act on <em>MdWRKY79</em> and <em>MdNLR16</em> mRNAs, and the resulting m<sup>6</sup>A modification stabilizes their mRNAs and improves translation efficiency. These data identify that m<sup>6</sup>A modification through MdVIR1 and MdVIR2 methyltransferases is essential for sorbitol-controlled resistance to <em>A. alternata</em>.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"47 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.12.033","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sorbitol, a main photosynthate and transport carbohydrate in all tree fruit species in Rosaceae, acts as a signal controlling resistance against Alternaria (A.) alternata in apple by altering the expression of the MdNLR16 resistance gene via the MdWRKY79 transcription factor. However, it is not known if N6-methyladenosine (m6A) methylation of the mRNAs of these genes participates in the process. Here, we found that decreased sorbitol synthesis in apple leaves leads to a transcriptome-wide reduction in the m6A modification, with fewer transcripts containing two or more methylation sites. We identified two methyltransferases, MdVIR1 and MdVIR2, that respond to sorbitol and A. alternata inoculation and positively control resistance to A. alternata. MdVIR1 and MdVIR2 act on MdWRKY79 and MdNLR16 mRNAs, and the resulting m6A modification stabilizes their mRNAs and improves translation efficiency. These data identify that m6A modification through MdVIR1 and MdVIR2 methyltransferases is essential for sorbitol-controlled resistance to A. alternata.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.