{"title":"Light-Driven Photocathodes in Li/Zn-O2 (air) Batteries: An Analytical Review, Technological Breakthroughs and Future Challenges","authors":"Md Iftekher Hossain, Foysal Kabir Tareq, Souman Rudra","doi":"10.1016/j.ensm.2025.104025","DOIUrl":null,"url":null,"abstract":"The rapid advancement of renewable energy technologies has intensified the demand for high-performance energy storage systems. Metal-O<sub>2</sub> (air) batteries, specifically Li-O<sub>2</sub> (air) and Zn-O<sub>2</sub> (air) variants, present exceptional theoretical energy densities, positioning them as promising candidates for next-generation storage solutions. However, significant challenges remain in optimizing the oxygen reduction and evolution reactions (ORR/OER), critical for achieving high efficiency and stability. Recent developments in light-assisted metal-O<sub>2</sub> (air) battery designs leverage photonic energy to enhance oxygen reduction and evolution reactions, offering reduced charge voltages, improved round-trip efficiencies, and extended lifetimes. This review critically evaluates the breakthroughs and limitations in photo-assisted Li/Zn-O<sub>2</sub> (air) battery technologies, with a focus on novel photocathode materials, including advanced semiconductors, heterojunction configurations, and nanostructured catalysts. We systematically highlight the key properties of these photocathode materials, evaluating their photon-utilization efficiency, charge separation capabilities, recombination rates, charging/discharging profiles, efficient decomposition of discharge products and stability under operational conditions. Emphasis is placed on advanced strategies to enhance light absorption, aiming to optimize photocatalytic efficiency, electronic properties, and catalytic stability, thereby overcoming current performance barriers. By providing a comprehensive analysis of the current landscape and emerging trends, this review aims to chart a path forward for the development of more robust, efficient, and sustainable light-assisted Li/Zn-O<sub>2</sub> (air) batteries, highlighting the essential role of innovative photocathode materials in achieving next-generation energy storage solutions.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"68 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104025","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of renewable energy technologies has intensified the demand for high-performance energy storage systems. Metal-O2 (air) batteries, specifically Li-O2 (air) and Zn-O2 (air) variants, present exceptional theoretical energy densities, positioning them as promising candidates for next-generation storage solutions. However, significant challenges remain in optimizing the oxygen reduction and evolution reactions (ORR/OER), critical for achieving high efficiency and stability. Recent developments in light-assisted metal-O2 (air) battery designs leverage photonic energy to enhance oxygen reduction and evolution reactions, offering reduced charge voltages, improved round-trip efficiencies, and extended lifetimes. This review critically evaluates the breakthroughs and limitations in photo-assisted Li/Zn-O2 (air) battery technologies, with a focus on novel photocathode materials, including advanced semiconductors, heterojunction configurations, and nanostructured catalysts. We systematically highlight the key properties of these photocathode materials, evaluating their photon-utilization efficiency, charge separation capabilities, recombination rates, charging/discharging profiles, efficient decomposition of discharge products and stability under operational conditions. Emphasis is placed on advanced strategies to enhance light absorption, aiming to optimize photocatalytic efficiency, electronic properties, and catalytic stability, thereby overcoming current performance barriers. By providing a comprehensive analysis of the current landscape and emerging trends, this review aims to chart a path forward for the development of more robust, efficient, and sustainable light-assisted Li/Zn-O2 (air) batteries, highlighting the essential role of innovative photocathode materials in achieving next-generation energy storage solutions.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.