Engineering an optimized hypercompact CRISPR/Cas12j-8 system for efficient genome editing in plants

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shasha Bai, Xingyu Cao, Lizhe Hu, Danling Hu, Dongming Li, Yongwei Sun
{"title":"Engineering an optimized hypercompact CRISPR/Cas12j-8 system for efficient genome editing in plants","authors":"Shasha Bai, Xingyu Cao, Lizhe Hu, Danling Hu, Dongming Li, Yongwei Sun","doi":"10.1111/pbi.14574","DOIUrl":null,"url":null,"abstract":"The Cas12j-8 nuclease, derived from the type V CRISPR system, is approximately half the size of Cas9 and recognizes a 5′-TTN-3′ protospacer adjacent motif sequence, thus potentially having broad application in genome editing for crop improvement. However, its editing efficiency remains low in plants. In this study, we rationally engineered both the crRNA and the Cas12j-8 nuclease. The engineered crRNA and Cas12j-8 markedly improved genome editing efficiency in plants. When combined, they exhibited robust editing activity in soybean and rice, enabling the editing of target sites that were previously uneditable. Notably, for certain target sequences, the editing activity was comparable to that of SpCas9 when targeting identical sequences, and it outperformed the Cas12j-2 variant, nCas12j-2, across all tested targets. Additionally, we developed cytosine base editors based on the engineered crRNA and Cas12j-8, demonstrating an average increase of 5.36- to 6.85-fold in base-editing efficiency (C to T) compared with the unengineered system in plants, with no insertions or deletions (indels) observed. Collectively, these findings indicate that the engineered hypercompact CRISPR/Cas12j-8 system serves as an efficient tool for genome editing mediated by both nuclease cleavage and base editing in plants.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"4 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14574","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Cas12j-8 nuclease, derived from the type V CRISPR system, is approximately half the size of Cas9 and recognizes a 5′-TTN-3′ protospacer adjacent motif sequence, thus potentially having broad application in genome editing for crop improvement. However, its editing efficiency remains low in plants. In this study, we rationally engineered both the crRNA and the Cas12j-8 nuclease. The engineered crRNA and Cas12j-8 markedly improved genome editing efficiency in plants. When combined, they exhibited robust editing activity in soybean and rice, enabling the editing of target sites that were previously uneditable. Notably, for certain target sequences, the editing activity was comparable to that of SpCas9 when targeting identical sequences, and it outperformed the Cas12j-2 variant, nCas12j-2, across all tested targets. Additionally, we developed cytosine base editors based on the engineered crRNA and Cas12j-8, demonstrating an average increase of 5.36- to 6.85-fold in base-editing efficiency (C to T) compared with the unengineered system in plants, with no insertions or deletions (indels) observed. Collectively, these findings indicate that the engineered hypercompact CRISPR/Cas12j-8 system serves as an efficient tool for genome editing mediated by both nuclease cleavage and base editing in plants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信