Carmine Varriale , Thomas Lombaerts , Gertjan Looye
{"title":"Direct Lift Control: A review of its principles, merits, current and future implementations","authors":"Carmine Varriale , Thomas Lombaerts , Gertjan Looye","doi":"10.1016/j.paerosci.2024.101073","DOIUrl":null,"url":null,"abstract":"<div><div>Direct Lift Control (DLC) is the capability to directly and intentionally influence lift on a fixed-wing aircraft by means of aerodynamic control devices, with minimum change of its angle of attack. Although several definitions exist, with various degrees of ambiguity, the combination of DLC and pitch attitude control has unambiguously proven to reduce pilot workload and improve flying comfort considerably. DLC has historically seen several applications on so-called inflight simulators and, recently, this capability has been rolled out over several aircraft types of the US Navy fleet, massively reducing pilot workload during carrier landings. On the civil front, only one aircraft type has been equipped with this capability, despite its very positive reception by flight crews and passengers. The intention of this paper is to revive interest in civil DLC applications, by reviewing in-depth its basic principles, characteristic features, benefits, and implementations so far. Several modern aircraft and disruptive wing configurations appear to be inherently capable of accommodating DLC functionality from a flight physical, systems, and software point of view. The proven benefits of DLC are likely to well outweigh the cost of the added functionality.</div></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"152 ","pages":"Article 101073"},"PeriodicalIF":11.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037604212400099X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Direct Lift Control (DLC) is the capability to directly and intentionally influence lift on a fixed-wing aircraft by means of aerodynamic control devices, with minimum change of its angle of attack. Although several definitions exist, with various degrees of ambiguity, the combination of DLC and pitch attitude control has unambiguously proven to reduce pilot workload and improve flying comfort considerably. DLC has historically seen several applications on so-called inflight simulators and, recently, this capability has been rolled out over several aircraft types of the US Navy fleet, massively reducing pilot workload during carrier landings. On the civil front, only one aircraft type has been equipped with this capability, despite its very positive reception by flight crews and passengers. The intention of this paper is to revive interest in civil DLC applications, by reviewing in-depth its basic principles, characteristic features, benefits, and implementations so far. Several modern aircraft and disruptive wing configurations appear to be inherently capable of accommodating DLC functionality from a flight physical, systems, and software point of view. The proven benefits of DLC are likely to well outweigh the cost of the added functionality.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.