From plankton to fish: The multifaceted threat of microplastics in freshwater environments

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY
Cuimei Gao, Baohong Xu, Zhongyuan Li, Zhuoman Wang, Siqi Huang, Zijian Jiang, Xiaomin Gong, Huilin Yang
{"title":"From plankton to fish: The multifaceted threat of microplastics in freshwater environments","authors":"Cuimei Gao, Baohong Xu, Zhongyuan Li, Zhuoman Wang, Siqi Huang, Zijian Jiang, Xiaomin Gong, Huilin Yang","doi":"10.1016/j.aquatox.2025.107242","DOIUrl":null,"url":null,"abstract":"The detrimental impact of emerging pollutants, specifically microplastics (MPs), on the ecological environment are receiving increasing attention. Freshwater ecosystems serve as both repositories for terrestrial microplastic (MP) sources and conduits for their subsequent entry into marine environments. Consequently, it is imperative to rigorously investigate the toxicological effects of MPs on freshwater ecosystems. This article provides a comprehensive analysis of the ecological toxicity effects of MP pollution, both in isolation and in combination with other pollutants, on freshwater aquatic organisms, including plankton, benthic organisms, and fish. The review elucidates potential mechanisms underlying these effects, which encompass oxidative stress, metabolic disorders, immune and inflammatory responses, dysbiosis of the gut microbiota, DNA damage, and cell apoptosis. This paper advocates for the integrated application of multi-omics technologies to investigate the molecular mechanisms underlying the toxicity of MPs to freshwater aquatic organisms from interdisciplinary and multifaceted perspectives. Additionally, it emphasizes the importance of enhancing research on the compounded pollution effects arising from various pollution modes, particularly in conjunction with other pollutants. This study aims to establish a foundation for assessing the ecological risks posed by MPs in freshwater ecosystem and offers valuable insights for the protection of aquatic biodiversity and ecosystem stability.","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"16 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.aquatox.2025.107242","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The detrimental impact of emerging pollutants, specifically microplastics (MPs), on the ecological environment are receiving increasing attention. Freshwater ecosystems serve as both repositories for terrestrial microplastic (MP) sources and conduits for their subsequent entry into marine environments. Consequently, it is imperative to rigorously investigate the toxicological effects of MPs on freshwater ecosystems. This article provides a comprehensive analysis of the ecological toxicity effects of MP pollution, both in isolation and in combination with other pollutants, on freshwater aquatic organisms, including plankton, benthic organisms, and fish. The review elucidates potential mechanisms underlying these effects, which encompass oxidative stress, metabolic disorders, immune and inflammatory responses, dysbiosis of the gut microbiota, DNA damage, and cell apoptosis. This paper advocates for the integrated application of multi-omics technologies to investigate the molecular mechanisms underlying the toxicity of MPs to freshwater aquatic organisms from interdisciplinary and multifaceted perspectives. Additionally, it emphasizes the importance of enhancing research on the compounded pollution effects arising from various pollution modes, particularly in conjunction with other pollutants. This study aims to establish a foundation for assessing the ecological risks posed by MPs in freshwater ecosystem and offers valuable insights for the protection of aquatic biodiversity and ecosystem stability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信