Extensive composable entropy for the analysis of cosmological data

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Constantino Tsallis , Henrik Jeldtoft Jensen
{"title":"Extensive composable entropy for the analysis of cosmological data","authors":"Constantino Tsallis ,&nbsp;Henrik Jeldtoft Jensen","doi":"10.1016/j.physletb.2024.139238","DOIUrl":null,"url":null,"abstract":"<div><div>In recent decades, an intensive worldwide research activity is focusing both black holes and cosmos (e.g. the dark-energy phenomenon) on the basis of entropic approaches. The Boltzmann-Gibbs-based Bekenstein-Hawking entropy <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>H</mi></mrow></msub><mo>∝</mo><mi>A</mi><mo>/</mo><msubsup><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> (<em>A</em>≡ area; <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>P</mi></mrow></msub><mo>≡</mo></math></span> Planck length) systematically plays a crucial theoretical role although it has a serious drawback, namely that it violates the thermodynamic extensivity of spatially-three-dimensional systems. Still, its intriguing area dependence points out the relevance of considering the form <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>∼</mo><msup><mrow><mi>μ</mi></mrow><mrow><msup><mrow><mi>N</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></msup><mspace></mspace><mspace></mspace><mo>(</mo><mi>μ</mi><mo>&gt;</mo><mn>1</mn><mo>;</mo><mi>γ</mi><mo>&gt;</mo><mn>0</mn><mo>)</mo></math></span>, <em>W</em> and <em>N</em> respectively being the total number of microscopic possibilities and the number of components; <span><math><mi>γ</mi><mo>=</mo><mn>1</mn></math></span> corresponds to standard Boltzmann-Gibbs (BG) statistical mechanics. For this <span><math><mi>W</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> asymptotic behavior, we make use of the group-theoretic entropic functional <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>γ</mi></mrow></msub><mo>=</mo><mi>k</mi><msup><mrow><mo>[</mo><mfrac><mrow><mi>ln</mi><mo>⁡</mo><msubsup><mrow><mi>Σ</mi></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msubsup><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>α</mi></mrow></msubsup></mrow><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></mfrac><mo>]</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac></mrow></msup><mspace></mspace><mo>(</mo><mi>α</mi><mo>∈</mo><mi>R</mi><mo>;</mo><mspace></mspace><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi><mi>G</mi></mrow></msub><mo>≡</mo><mo>−</mo><mi>k</mi><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>W</mi></mrow></msubsup><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>ln</mi><mo>⁡</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>, first derived by P. Tempesta in Chaos <strong>30</strong>,123119, (2020). This functional is <em>extensive</em> (as required by thermodynamics) and <em>composable</em>, <span><math><mo>∀</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo>)</mo></math></span>. Being extensive means that in the micro-canonical, or uniform, ensemble where all micro-state occur with the same probability, the entropy becomes proportional to <em>N</em> asymptotically: <span><math><mi>S</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>∝</mo><mi>N</mi></math></span> for <span><math><mi>N</mi><mo>→</mo><mo>∞</mo></math></span>. An entropy is composable if it satisfies that the entropy <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> of a system <span><math><mi>A</mi><mo>=</mo><mi>B</mi><mo>×</mo><mi>C</mi></math></span> consisting of two statistically independent parts <em>B</em> and <em>C</em> is given in a consistent way as <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>=</mo><mi>Φ</mi><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>)</mo></math></span> where the composition function <span><math><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is obtained from group-theory.</div><div>We further show that <span><math><mo>(</mo><mi>α</mi><mo>,</mo><mi>γ</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>/</mo><mn>3</mn><mo>)</mo></math></span> satisfactorily agrees with cosmological data measuring neutrinos, Big Bang nucleosynthesis and the relic abundance of cold dark matter particles, as well as dynamical and geometrical cosmological data sets.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"861 ","pages":"Article 139238"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269324007962","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent decades, an intensive worldwide research activity is focusing both black holes and cosmos (e.g. the dark-energy phenomenon) on the basis of entropic approaches. The Boltzmann-Gibbs-based Bekenstein-Hawking entropy SBHA/lP2 (A≡ area; lP Planck length) systematically plays a crucial theoretical role although it has a serious drawback, namely that it violates the thermodynamic extensivity of spatially-three-dimensional systems. Still, its intriguing area dependence points out the relevance of considering the form W(N)μNγ(μ>1;γ>0), W and N respectively being the total number of microscopic possibilities and the number of components; γ=1 corresponds to standard Boltzmann-Gibbs (BG) statistical mechanics. For this W(N) asymptotic behavior, we make use of the group-theoretic entropic functional Sα,γ=k[lnΣi=1Wpiα1α]1γ(αR;S1,1=SBGki=1Wpilnpi), first derived by P. Tempesta in Chaos 30,123119, (2020). This functional is extensive (as required by thermodynamics) and composable, (α,γ). Being extensive means that in the micro-canonical, or uniform, ensemble where all micro-state occur with the same probability, the entropy becomes proportional to N asymptotically: S(N)N for N. An entropy is composable if it satisfies that the entropy SA of a system A=B×C consisting of two statistically independent parts B and C is given in a consistent way as SA=Φ(SB,SC) where the composition function Φ(x,y) is obtained from group-theory.
We further show that (α,γ)=(1,2/3) satisfactorily agrees with cosmological data measuring neutrinos, Big Bang nucleosynthesis and the relic abundance of cold dark matter particles, as well as dynamical and geometrical cosmological data sets.
用于宇宙学数据分析的广泛可组合熵
近几十年来,世界范围内对黑洞和宇宙(如暗能量现象)的研究都集中在熵方法的基础上。基于玻尔兹曼-吉布斯的贝肯斯坦-霍金熵SBH∝A/lP2 (A≡面积;lP≡普朗克长度)系统地起着至关重要的理论作用,尽管它有一个严重的缺点,即它违反了空间三维系统的热力学广泛性。尽管如此,其有趣的区域依赖性指出了考虑W(N) ~ μNγ(μ>1;γ>0)形式的相关性,W和N分别是微观可能性的总数和组分的数量;γ=1对应于标准玻尔兹曼-吉布斯(BG)统计力学。对于这种W(N)渐近行为,我们使用了群论熵泛函Sα,γ=k[ln (Σi) =1Wpiα1 - α]1γ(α∈R;S1,1=SBG≡- k∑i=1Wpiln (pi)),该泛函首先由P. Tempesta在Chaos 30,123119,(2020)中导出。这个泛函是广泛的(如热力学所要求的)和可组合的,∀(α,γ)。广泛意味着在微正则系综中,所有微观状态都以相同的概率发生,熵与N渐近成正比:S(N)∝N→∞。如果由统计上独立的两个部分B和C组成的系统a =B×C的熵SA一致地表示为SA=Φ(SB,SC),其中组合函数Φ(x,y)由群论得到,则该熵是可组合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信