T. Petrachi, A. Portone, D. Bellucci, L. Pacchioni, C. Marra, G. De Santis, L. Rovati, M. Dominici, E. Veronesi, V. Cannillo
{"title":"A Bioprinted Hydrogel Patch With Bioactive Glass: A New Frontier in Chronic Wound Healing","authors":"T. Petrachi, A. Portone, D. Bellucci, L. Pacchioni, C. Marra, G. De Santis, L. Rovati, M. Dominici, E. Veronesi, V. Cannillo","doi":"10.1002/jbm.a.37865","DOIUrl":null,"url":null,"abstract":"<p>A wound, defined as a disruption in the continuity of the skin, is among the most common issues in the population and poses a significant burden on healthcare systems and economies worldwide. Despite the countless medical devices currently available to promote wound repair and skin regeneration, there is a growing demand for new skin devices that incorporate innovative biomaterials and advanced technologies. Bioglasses are biocompatible and bioactive materials capable of interacting with biological tissues. Due to their ability to promote fibroblast proliferation, angiogenesis, collagen production, and evade antibacterial activity, they have been suggested as key players in the skin regeneration process. Since their initial introduction, various compositions have been proposed depending on the clinical goal to be achieved. Recently, a novel bioglass composition named Bio_MS was found to exhibit significant bone regenerative potential. Given its peculiar composition characterized by strontium and magnesium, Bio_MS could also play a role in skin healing. In the present work, an innovative patch was designed by combining the attractive characteristics of Bio_MS with bioprinting technology. The regenerative potential of the Bio_MS patch was tested in an ex vivo cutaneous model using human skin in which an experimental wound was induced by sodium dodecyl sulfate incubation. After injury, the Bio_MS patch was able to restore skin architecture and enhance the epidermal barrier function. Additionally, the Bio_MS patch demonstrated therapeutic effects in both the epidermis and dermis, making it suitable not only for superficial lesions but also for deep wounds.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37865","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37865","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A wound, defined as a disruption in the continuity of the skin, is among the most common issues in the population and poses a significant burden on healthcare systems and economies worldwide. Despite the countless medical devices currently available to promote wound repair and skin regeneration, there is a growing demand for new skin devices that incorporate innovative biomaterials and advanced technologies. Bioglasses are biocompatible and bioactive materials capable of interacting with biological tissues. Due to their ability to promote fibroblast proliferation, angiogenesis, collagen production, and evade antibacterial activity, they have been suggested as key players in the skin regeneration process. Since their initial introduction, various compositions have been proposed depending on the clinical goal to be achieved. Recently, a novel bioglass composition named Bio_MS was found to exhibit significant bone regenerative potential. Given its peculiar composition characterized by strontium and magnesium, Bio_MS could also play a role in skin healing. In the present work, an innovative patch was designed by combining the attractive characteristics of Bio_MS with bioprinting technology. The regenerative potential of the Bio_MS patch was tested in an ex vivo cutaneous model using human skin in which an experimental wound was induced by sodium dodecyl sulfate incubation. After injury, the Bio_MS patch was able to restore skin architecture and enhance the epidermal barrier function. Additionally, the Bio_MS patch demonstrated therapeutic effects in both the epidermis and dermis, making it suitable not only for superficial lesions but also for deep wounds.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.