Carbon filter layer for respirator derived from acrylic filter felt.

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yuanfeng Wang, Mohanapriya Venkataraman, Dana Křemenáková, Jakub Hrůza, Jiří Militký
{"title":"Carbon filter layer for respirator derived from acrylic filter felt.","authors":"Yuanfeng Wang, Mohanapriya Venkataraman, Dana Křemenáková, Jakub Hrůza, Jiří Militký","doi":"10.1016/j.wasman.2025.01.005","DOIUrl":null,"url":null,"abstract":"<p><p>Pyrolysis emerges as a strategy for handling waste textiles, wherein the conversion of high-carbon-content textile waste into carbonaceous materials facilitates the restoration of its economic value, concurrently mitigating the environmental impact posed by textile waste. The present study fabricated carbon felts for respiratory filter layers through single-step pyrolysis of acrylic filter felts. The advantage of employing conductive carbon felt as a respiratory filter layer is its capability to concurrently serve two functions: filtration and electrical heating for high-temperature disinfection. In order to achieve these two functions, both the respirator body and the embedded electrodes were designed to ensure the reliability of high-temperature disinfection. The breathability and water vapor permeability of the obtained carbon felt were examined to confirm its comfortability as a respiratory filter layer. The results of filtration efficiency and antimicrobial testing indicated that the carbon felt exhibited a filtration efficiency of over 90 % against inhalable particulate matter, while its antimicrobial properties effectively suppressed microbial growth. This method of reutilizing waste textiles maintained consistency in the usage of textiles before and after reuse, simplified the reusing process of waste acrylic fibers, and simultaneously reduced the manufacturing costs of respiratory filters. The designed respiratory filters have the potential for application in settings such as hospitals and virus research institutions.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"194 ","pages":"115-124"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2025.01.005","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pyrolysis emerges as a strategy for handling waste textiles, wherein the conversion of high-carbon-content textile waste into carbonaceous materials facilitates the restoration of its economic value, concurrently mitigating the environmental impact posed by textile waste. The present study fabricated carbon felts for respiratory filter layers through single-step pyrolysis of acrylic filter felts. The advantage of employing conductive carbon felt as a respiratory filter layer is its capability to concurrently serve two functions: filtration and electrical heating for high-temperature disinfection. In order to achieve these two functions, both the respirator body and the embedded electrodes were designed to ensure the reliability of high-temperature disinfection. The breathability and water vapor permeability of the obtained carbon felt were examined to confirm its comfortability as a respiratory filter layer. The results of filtration efficiency and antimicrobial testing indicated that the carbon felt exhibited a filtration efficiency of over 90 % against inhalable particulate matter, while its antimicrobial properties effectively suppressed microbial growth. This method of reutilizing waste textiles maintained consistency in the usage of textiles before and after reuse, simplified the reusing process of waste acrylic fibers, and simultaneously reduced the manufacturing costs of respiratory filters. The designed respiratory filters have the potential for application in settings such as hospitals and virus research institutions.

呼吸器碳过滤层由丙烯酸滤毡制成。
热解是一种处理废纺织品的策略,将高碳含量的纺织废料转化为含碳材料,有利于恢复其经济价值,同时减轻纺织废料对环境的影响。本研究采用腈纶滤毡单步热解法制备呼吸过滤层用碳毡。采用导电碳毡作为呼吸过滤层的优点是它能够同时具有两种功能:过滤和高温消毒的电加热。为了实现这两种功能,呼吸器本体和嵌入式电极都进行了设计,以确保高温消毒的可靠性。对所得碳毡的透气性和透气性进行了测试,以证实其作为呼吸过滤层的舒适性。过滤效率和抗菌性能测试结果表明,碳毡对可吸入颗粒物的过滤效率超过90%,同时其抗菌性能能有效抑制微生物的生长。这种废旧纺织品再利用方法保持了纺织品再利用前后的使用一致性,简化了废旧腈纶的再利用过程,同时降低了呼吸过滤器的制造成本。所设计的呼吸过滤器具有在医院和病毒研究机构等环境中应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信