Ekaterina Oparina, Caspar Kaiser, Niccolò Gentile, Alexandre Tkatchenko, Andrew E Clark, Jan-Emmanuel De Neve, Conchita D'Ambrosio
{"title":"Machine learning in the prediction of human wellbeing.","authors":"Ekaterina Oparina, Caspar Kaiser, Niccolò Gentile, Alexandre Tkatchenko, Andrew E Clark, Jan-Emmanuel De Neve, Conchita D'Ambrosio","doi":"10.1038/s41598-024-84137-1","DOIUrl":null,"url":null,"abstract":"<p><p>Subjective wellbeing data are increasingly used across the social sciences. Yet, despite the widespread use of such data, the predictive power of approaches commonly used to model wellbeing is only limited. In response, we here use tree-based Machine Learning (ML) algorithms to provide a better understanding of respondents' self-reported wellbeing. We analyse representative samples of more than one million respondents from Germany, the UK, and the United States, using data from 2010 to 2018. We make three contributions. First, we show that ML algorithms can indeed yield better predictive performance than standard approaches, and establish an upper bound on the predictability of wellbeing scores with survey data. Second, we use ML to identify the key drivers of evaluative wellbeing. We show that the variables emphasised in the earlier intuition- and theory-based literature also appear in ML analyses. Third, we illustrate how ML can be used to make a judgement about functional forms, including the existence of satiation points in the effects of income and the U-shaped relationship between age and wellbeing.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"1632"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723942/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-84137-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Subjective wellbeing data are increasingly used across the social sciences. Yet, despite the widespread use of such data, the predictive power of approaches commonly used to model wellbeing is only limited. In response, we here use tree-based Machine Learning (ML) algorithms to provide a better understanding of respondents' self-reported wellbeing. We analyse representative samples of more than one million respondents from Germany, the UK, and the United States, using data from 2010 to 2018. We make three contributions. First, we show that ML algorithms can indeed yield better predictive performance than standard approaches, and establish an upper bound on the predictability of wellbeing scores with survey data. Second, we use ML to identify the key drivers of evaluative wellbeing. We show that the variables emphasised in the earlier intuition- and theory-based literature also appear in ML analyses. Third, we illustrate how ML can be used to make a judgement about functional forms, including the existence of satiation points in the effects of income and the U-shaped relationship between age and wellbeing.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.