Design and optimal tuning of fractional order PID controller for paper machine headbox using jellyfish search optimizer algorithm.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Divya Nataraj, Manoharan Subramanian
{"title":"Design and optimal tuning of fractional order PID controller for paper machine headbox using jellyfish search optimizer algorithm.","authors":"Divya Nataraj, Manoharan Subramanian","doi":"10.1038/s41598-025-85810-9","DOIUrl":null,"url":null,"abstract":"<p><p>This manuscript proposes the Jellyfish Search Optimization (JSO) algorithm-based Fractional Order Proportional-Integral-Derivative (FOPID) controller tuning for a paper machine headbox. The novelty of this method lies in integrating the JSO technique for optimizing the parameters of the FOPID controller to monitor and control headbox pressure and stock level efficiently and effectively. The JSO algorithm ensures optimal tuning of controller parameters by minimizing error indices such as Integral of Squared Error (ISE), Integral of Time Absolute Error (ITAE), and Integral of Absolute Error (IAE). Simulations conducted on the MATLAB/Simulink platform demonstrate that the FOPID controller tuned using JSO achieves superior performance compared to conventional PI (Proportional-Integral) and PID (Proportional-Integral-Derivative) controllers. Specifically, the JSO-tuned FOPID controller exhibited a 25% reduction in rise time, a 30% improvement in settling time, and a 20% decrease in overshoot when compared to the PID controller. Furthermore, comparative analyses with other optimization techniques, including Moth Flame Optimization (MFO), Ant Lion Optimization (ALO), and Elephant Herding Optimization (EHO), reveal that the JSO algorithm provides higher accuracy and stability in diverse operating conditions. This study underscores the efficacy of the JSO-tuned FOPID controller as a robust solution for complex industrial applications, such as paper machine headbox systems, and highlights its potential to enhance process efficiency and control precision.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"1631"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85810-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript proposes the Jellyfish Search Optimization (JSO) algorithm-based Fractional Order Proportional-Integral-Derivative (FOPID) controller tuning for a paper machine headbox. The novelty of this method lies in integrating the JSO technique for optimizing the parameters of the FOPID controller to monitor and control headbox pressure and stock level efficiently and effectively. The JSO algorithm ensures optimal tuning of controller parameters by minimizing error indices such as Integral of Squared Error (ISE), Integral of Time Absolute Error (ITAE), and Integral of Absolute Error (IAE). Simulations conducted on the MATLAB/Simulink platform demonstrate that the FOPID controller tuned using JSO achieves superior performance compared to conventional PI (Proportional-Integral) and PID (Proportional-Integral-Derivative) controllers. Specifically, the JSO-tuned FOPID controller exhibited a 25% reduction in rise time, a 30% improvement in settling time, and a 20% decrease in overshoot when compared to the PID controller. Furthermore, comparative analyses with other optimization techniques, including Moth Flame Optimization (MFO), Ant Lion Optimization (ALO), and Elephant Herding Optimization (EHO), reveal that the JSO algorithm provides higher accuracy and stability in diverse operating conditions. This study underscores the efficacy of the JSO-tuned FOPID controller as a robust solution for complex industrial applications, such as paper machine headbox systems, and highlights its potential to enhance process efficiency and control precision.

Abstract Image

Abstract Image

Abstract Image

基于水母搜索优化算法的纸机头箱分数阶PID控制器设计与优化整定。
本文提出了一种基于水母搜索优化(JSO)算法的分数阶比例积分导数(FOPID)控制器对纸机机头箱的整定。该方法的新颖之处在于将JSO技术集成到FOPID控制器的参数优化中,实现了对缸体压力和料位的高效监控。JSO算法通过最小化误差指标,如平方误差积分(ISE)、时间绝对误差积分(ITAE)和绝对误差积分(IAE),确保控制器参数的最优调整。在MATLAB/Simulink平台上进行的仿真表明,与传统的PI(比例积分)和PID(比例积分导数)控制器相比,使用JSO调谐的FOPID控制器具有优越的性能。具体来说,与PID控制器相比,jso调谐的FOPID控制器的上升时间减少了25%,稳定时间提高了30%,超调量减少了20%。通过与飞蛾火焰优化(MFO)、蚁狮优化(ALO)和象群优化(EHO)等优化技术的对比分析,表明JSO算法在不同工况下具有更高的精度和稳定性。这项研究强调了jso调谐FOPID控制器作为复杂工业应用(如造纸机头箱系统)的强大解决方案的有效性,并强调了其提高工艺效率和控制精度的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信