Aya G Rashwan, Doaa H Assar, Abdallah S Salah, Muyassar H Abualreesh, Shimaa M R Salem, Norah Althobaiti, Zizy I Elbialy
{"title":"Assessing clenbuterol's modulation of metabolic and inflammatory pathways in Nile tilapia (Oreochromas niloticous) fed high fat diet.","authors":"Aya G Rashwan, Doaa H Assar, Abdallah S Salah, Muyassar H Abualreesh, Shimaa M R Salem, Norah Althobaiti, Zizy I Elbialy","doi":"10.1038/s41598-024-84814-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study was performed to reveal the metabolic effects and molecular mechanisms that govern the dietary incorporation of clenbuterol on growth performance, haemato-biochemical changes, histological alteration, and gene expression regulating glucose and lipid metabolism in normal and high-fat diets fed in Nile tilapia (Oreochromis niloticus). Six experimental diets were formulated, incorporating different concentrations of clenbuterol. The 1st three groups were supplemented with a diet comprising 6% fat, with clenbuterol of 0, 5, and 10 g/kg diet was designated as F6 clenb0, F6clenb5, and F6clenb10, respectively. The other treatment groups were fed a diet of 12% fat, with clenbuterol 0, 5, and 10 g/kg diet, respectively termed F12 clenb0, F12 clenb5, and F12 clenb10. The results revealed that compared to the control group, HFD exhibited a marked reduction in FBW, BWG, PER, and body protein percent but significantly increased the FCR, IPF, liver fat percent, and body ash percent with altered hematological parameters, raised serum biomarkers of hepatic and renal injury. HFD signally raised mRNA expression of pro-inflammatory cytokines, and declined nrf2 and antioxidative function-related genes. Also increased mRNA expression of lipogenic genes as FAS and SREBP-1c and gluconeogenic genes as pepck and g6pc while downregulated, pparα, cpt1, acox1. Nevertheless, clenbuterol supplementation significantly reversed the aforementioned findings induced by HFD. Clenbuterol inclusion significantly improves growth performance and antioxidant defenses by modulating nrf2 signaling and reducing inflammatory response, reduces fatty acid synthesis, and enhances mitochondrial β-oxidation not only functioning as a lipid regulator and effectively alleviating fat accumulation in the liver but playing an essential role in the control of glucose metabolism by reducing hepatic glucose production in high-fat diet-fed Nile tilapias well.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"1581"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-84814-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study was performed to reveal the metabolic effects and molecular mechanisms that govern the dietary incorporation of clenbuterol on growth performance, haemato-biochemical changes, histological alteration, and gene expression regulating glucose and lipid metabolism in normal and high-fat diets fed in Nile tilapia (Oreochromis niloticus). Six experimental diets were formulated, incorporating different concentrations of clenbuterol. The 1st three groups were supplemented with a diet comprising 6% fat, with clenbuterol of 0, 5, and 10 g/kg diet was designated as F6 clenb0, F6clenb5, and F6clenb10, respectively. The other treatment groups were fed a diet of 12% fat, with clenbuterol 0, 5, and 10 g/kg diet, respectively termed F12 clenb0, F12 clenb5, and F12 clenb10. The results revealed that compared to the control group, HFD exhibited a marked reduction in FBW, BWG, PER, and body protein percent but significantly increased the FCR, IPF, liver fat percent, and body ash percent with altered hematological parameters, raised serum biomarkers of hepatic and renal injury. HFD signally raised mRNA expression of pro-inflammatory cytokines, and declined nrf2 and antioxidative function-related genes. Also increased mRNA expression of lipogenic genes as FAS and SREBP-1c and gluconeogenic genes as pepck and g6pc while downregulated, pparα, cpt1, acox1. Nevertheless, clenbuterol supplementation significantly reversed the aforementioned findings induced by HFD. Clenbuterol inclusion significantly improves growth performance and antioxidant defenses by modulating nrf2 signaling and reducing inflammatory response, reduces fatty acid synthesis, and enhances mitochondrial β-oxidation not only functioning as a lipid regulator and effectively alleviating fat accumulation in the liver but playing an essential role in the control of glucose metabolism by reducing hepatic glucose production in high-fat diet-fed Nile tilapias well.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.