Health & Gait: a dataset for gait-based analysis.

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jorge Zafra-Palma, Nuria Marín-Jiménez, José Castro-Piñero, Magdalena Cuenca-García, Rafael Muñoz-Salinas, Manuel J Marín-Jiménez
{"title":"Health & Gait: a dataset for gait-based analysis.","authors":"Jorge Zafra-Palma, Nuria Marín-Jiménez, José Castro-Piñero, Magdalena Cuenca-García, Rafael Muñoz-Salinas, Manuel J Marín-Jiménez","doi":"10.1038/s41597-024-04327-4","DOIUrl":null,"url":null,"abstract":"<p><p>Acquiring gait metrics and anthropometric data is crucial for evaluating an individual's physical status. Automating this assessment process alleviates the burden on healthcare professionals and accelerates patient monitoring. Current automation techniques depend on specific, expensive systems such as OptoGait or MuscleLAB, which necessitate training and physical space. A more accessible alternative could be artificial vision systems that are operable via mobile devices. This article introduces Health&Gait, the first dataset for video-based gait analysis, comprising 398 participants and 1, 564 videos. The dataset provides information such as the participant's silhouette, semantic segmentation, optical flow, and human pose. Furthermore, each participant's data includes their sex, anthropometric measurements like height and weight, and gait parameters such as step or stride length and gait speed. The technical evaluation demonstrates the utility of the information extracted from the videos and the gait parameters in tackling tasks like sex classification and regression of weight and age. Health&Gait facilitates the progression of artificial vision algorithms for automated gait analysis.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"44"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04327-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Acquiring gait metrics and anthropometric data is crucial for evaluating an individual's physical status. Automating this assessment process alleviates the burden on healthcare professionals and accelerates patient monitoring. Current automation techniques depend on specific, expensive systems such as OptoGait or MuscleLAB, which necessitate training and physical space. A more accessible alternative could be artificial vision systems that are operable via mobile devices. This article introduces Health&Gait, the first dataset for video-based gait analysis, comprising 398 participants and 1, 564 videos. The dataset provides information such as the participant's silhouette, semantic segmentation, optical flow, and human pose. Furthermore, each participant's data includes their sex, anthropometric measurements like height and weight, and gait parameters such as step or stride length and gait speed. The technical evaluation demonstrates the utility of the information extracted from the videos and the gait parameters in tackling tasks like sex classification and regression of weight and age. Health&Gait facilitates the progression of artificial vision algorithms for automated gait analysis.

Abstract Image

Abstract Image

Abstract Image

健康与步态:一个基于步态分析的数据集。
获取步态指标和人体测量数据对于评估个人的身体状况至关重要。自动化此评估过程减轻了医疗保健专业人员的负担,并加快了对患者的监测。目前的自动化技术依赖于特定的、昂贵的系统,如OptoGait或MuscleLAB,这需要训练和物理空间。一种更容易获得的替代方案可能是可通过移动设备操作的人工视觉系统。本文介绍了健康与步态,这是基于视频的步态分析的第一个数据集,包括398名参与者和1564个视频。该数据集提供了参与者的轮廓、语义分割、光流和人体姿势等信息。此外,每个参与者的数据包括他们的性别、身高和体重等人体测量数据,以及步幅或步幅长度和步态速度等步态参数。技术评估证明了从视频中提取的信息和步态参数在处理性别分类和体重和年龄回归等任务中的实用性。健康与步态促进了自动步态分析的人工视觉算法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信