Anping Ji, Lang Zhou, Qiming Xiao, Jigang Liu, Wenqian Huang, Yun Yu, Zhengwei Zhang, Junhao Pi, Chenxi Yang, Haoxuan Chen
{"title":"Scaling Behavior of Ionic Conductance Dependent on Surface Charge Inside a Single-Digit Nanopore.","authors":"Anping Ji, Lang Zhou, Qiming Xiao, Jigang Liu, Wenqian Huang, Yun Yu, Zhengwei Zhang, Junhao Pi, Chenxi Yang, Haoxuan Chen","doi":"10.3390/molecules30010191","DOIUrl":null,"url":null,"abstract":"<p><p>The ionic conductance in a charged nanopore exhibits a power-law behavior in low salinity-as has been verified in many experiments (G0∝c0α)-which is governed by surface charges. The surface charge inside a nanopore determines the zeta potential and ion distributions, which have a significant impact on ion transport, especially in a single-digit nanopore with potential leakage. However, precisely measuring surface charge density in a single-digit nanopore remains a challenge. Here, we propose a methodology for exploring the power-law variation of ionic conductance, with potential leakage taken into account. We conducted experiments to measure the ionic current using silicon nitride nanopores and employed a continuous theory to explore the relationship between pore-bound concentration and surface charges. Considering that the influence of potential leakage on concentration follows a power-law relationship, we established a coefficient (α) to examine the controlling factors of potential leakage and modified the conductance model to obtain the ion mobility inside a nanopore.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721664/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30010191","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ionic conductance in a charged nanopore exhibits a power-law behavior in low salinity-as has been verified in many experiments (G0∝c0α)-which is governed by surface charges. The surface charge inside a nanopore determines the zeta potential and ion distributions, which have a significant impact on ion transport, especially in a single-digit nanopore with potential leakage. However, precisely measuring surface charge density in a single-digit nanopore remains a challenge. Here, we propose a methodology for exploring the power-law variation of ionic conductance, with potential leakage taken into account. We conducted experiments to measure the ionic current using silicon nitride nanopores and employed a continuous theory to explore the relationship between pore-bound concentration and surface charges. Considering that the influence of potential leakage on concentration follows a power-law relationship, we established a coefficient (α) to examine the controlling factors of potential leakage and modified the conductance model to obtain the ion mobility inside a nanopore.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.