Yang Li, Yaokang Wu, Xianhao Xu, Yanfeng Liu, Jianghua Li, Guocheng Du, Xueqin Lv, Yangyang Li, Long Liu
{"title":"A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria.","authors":"Yang Li, Yaokang Wu, Xianhao Xu, Yanfeng Liu, Jianghua Li, Guocheng Du, Xueqin Lv, Yangyang Li, Long Liu","doi":"10.1093/nar/gkae1315","DOIUrl":null,"url":null,"abstract":"<p><p>Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system. By applying this approach, two reconstructed inducible systems (a 2,4-diacetylphloroglucinol-inducible system PphlF3R1 and an anhydrotetracycline-inducible system Ptet2R2*) were successfully developed and demonstrated to function in three model microorganisms, including Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. To enhance their practicality, both inducible systems were subsequently placed on the plasmid and genome for detailed characterization to determine the optimal expression conditions. Furthermore, the more efficient inducible system Ptet2R2* was employed to express various reporter proteins and gene clusters in these three strains. Moreover, the aTc-inducible system Ptet2R2*, combined with T7 RNA polymerase and dCas12a, was utilized to develop a single-input genetic circuit that enables the simultaneous activation and repression of gene expression. Overall, the cross-species inducible system serves as a stringent, controllable and effective tool for protein expression and metabolic pathway control in different bacteria.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 2","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724366/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1315","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system. By applying this approach, two reconstructed inducible systems (a 2,4-diacetylphloroglucinol-inducible system PphlF3R1 and an anhydrotetracycline-inducible system Ptet2R2*) were successfully developed and demonstrated to function in three model microorganisms, including Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. To enhance their practicality, both inducible systems were subsequently placed on the plasmid and genome for detailed characterization to determine the optimal expression conditions. Furthermore, the more efficient inducible system Ptet2R2* was employed to express various reporter proteins and gene clusters in these three strains. Moreover, the aTc-inducible system Ptet2R2*, combined with T7 RNA polymerase and dCas12a, was utilized to develop a single-input genetic circuit that enables the simultaneous activation and repression of gene expression. Overall, the cross-species inducible system serves as a stringent, controllable and effective tool for protein expression and metabolic pathway control in different bacteria.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.