Trung Huu Bui , Nubia Zuverza-Mena , Emilie Kendrick , Carlos Tamez , Manavi Yadav , Sarah Alotaibi , Christian Dimkpa , Glen DeLoid , Omowunmi Sadik , Philip Demokritou , Jason C. White
{"title":"Micro-nanoscale polystyrene co-exposure impacts the uptake and translocation of arsenic and boscalid by lettuce (Lactuca sativa)","authors":"Trung Huu Bui , Nubia Zuverza-Mena , Emilie Kendrick , Carlos Tamez , Manavi Yadav , Sarah Alotaibi , Christian Dimkpa , Glen DeLoid , Omowunmi Sadik , Philip Demokritou , Jason C. White","doi":"10.1016/j.impact.2025.100541","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of micro-nanoplastics (MNPs) on the fate and effects of other pollutants present in the environment is largely unknown. This study evaluated if the root exposure to MNPs (polystyrene, PS; 20 or 1000 nm) had an impact on the accumulation of arsenic and boscalid (As and Bos) in lettuce (<em>Lactuca sativa</em>). Under hydroponic conditions, plants were co-exposed to MNPs at 10 or 50 mg/L, and to 1 mg/L of each environmental pollutant (EP). For soil-like media, plants were exposed to MNPs at 50 and EPs at 10 mg/kg. Phytotoxicity was enhanced by PS under both growth conditions, particularly by nanoscale PS (nPS), although impacts were less in potting mix-grown plants. Nanoscale PS had a greater impact than microscale PS (μPS) on As fate; the As translocation factor from roots to the edible shoots was increased 3-fold in plants exposed to nPS (50 mg/L) and EPs. PS dose and size had a variable impact on Bos uptake and translocation. Fluorescent microscopy analysis of lettuce co-exposed to MNPs and EPs suggests that nPS is entering the roots and translocating to the leaves, while μPS mostly remains in the roots. Pyrolysis-GC/MS showed that in solid media, the presence of EPs significantly increased the translocation of nPS to lettuce shoots from 4.43 ± 0.53 to 46.6 ± 9.7 mg/kg, while the concentration of μPS in the shoots remained the same regardless of the presence of EPs (ranging between 13.2 ± 5.5 to 14.2 ± 4.1 mg/kg). These findings demonstrate that co-exposure of MNPs with other EPs can significantly impact co-contaminant accumulation and toxicity, presenting an unknown risk to humans and other receptors.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"37 ","pages":"Article 100541"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074825000011","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of micro-nanoplastics (MNPs) on the fate and effects of other pollutants present in the environment is largely unknown. This study evaluated if the root exposure to MNPs (polystyrene, PS; 20 or 1000 nm) had an impact on the accumulation of arsenic and boscalid (As and Bos) in lettuce (Lactuca sativa). Under hydroponic conditions, plants were co-exposed to MNPs at 10 or 50 mg/L, and to 1 mg/L of each environmental pollutant (EP). For soil-like media, plants were exposed to MNPs at 50 and EPs at 10 mg/kg. Phytotoxicity was enhanced by PS under both growth conditions, particularly by nanoscale PS (nPS), although impacts were less in potting mix-grown plants. Nanoscale PS had a greater impact than microscale PS (μPS) on As fate; the As translocation factor from roots to the edible shoots was increased 3-fold in plants exposed to nPS (50 mg/L) and EPs. PS dose and size had a variable impact on Bos uptake and translocation. Fluorescent microscopy analysis of lettuce co-exposed to MNPs and EPs suggests that nPS is entering the roots and translocating to the leaves, while μPS mostly remains in the roots. Pyrolysis-GC/MS showed that in solid media, the presence of EPs significantly increased the translocation of nPS to lettuce shoots from 4.43 ± 0.53 to 46.6 ± 9.7 mg/kg, while the concentration of μPS in the shoots remained the same regardless of the presence of EPs (ranging between 13.2 ± 5.5 to 14.2 ± 4.1 mg/kg). These findings demonstrate that co-exposure of MNPs with other EPs can significantly impact co-contaminant accumulation and toxicity, presenting an unknown risk to humans and other receptors.
期刊介绍:
NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.