Sarah Campos, Firooz Salami, Marco Götze, Katharina Gather, Sebastian I Wolf
{"title":"Using functional calibration methods to estimate the midfoot joint center in planovalgus feet.","authors":"Sarah Campos, Firooz Salami, Marco Götze, Katharina Gather, Sebastian I Wolf","doi":"10.1016/j.jbiomech.2025.112493","DOIUrl":null,"url":null,"abstract":"<p><p>In order to improve the understanding foot function in the presence of planovalgus foot deformity, functional joint center determination is applied to the ankle and midfoot for application in 3D-gait analysis. Gait data of 36 patients with planovalgus (PV) foot deformity as well as of 33 typically developing (TD) subjects were collected using foot markers according to the Heidelberg Foot Measurement method. During single-limb stance subjects performed a circular movement of the foot and ankle (CIR) by drawing a circle with the hallux in the air. Midfoot joint center location as well as kinematics was calculated based (a) on functional calibration, (b) via a simple midpoint approach, and (c) via linear regression. All typically developing participants were able to perform the CIR movement with sufficient ROM for calibration whereas 10 % of the participants with idiopathic PV foot deformity and 72 % of the participants with a neurogenic PV foot were not able to perform this movement adequately. Nevertheless, the regression approach led to almost the same location of the midfoot joint center compared to the functional method with similar kinematics. PV feet show substantially larger Forefoot/Hindfoot flexion and Forefoot/Hindfoot adduction in gait compared to TD feet. On top, feet with neurologic background show reduced ROM of these angles in gait. The CIR movement task may prove useful in future studies monitoring active ranges of ankle and midfoot motion since the kinematics of this task may also be directly assessed via the proposed regression approach.</p>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"180 ","pages":"112493"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiomech.2025.112493","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to improve the understanding foot function in the presence of planovalgus foot deformity, functional joint center determination is applied to the ankle and midfoot for application in 3D-gait analysis. Gait data of 36 patients with planovalgus (PV) foot deformity as well as of 33 typically developing (TD) subjects were collected using foot markers according to the Heidelberg Foot Measurement method. During single-limb stance subjects performed a circular movement of the foot and ankle (CIR) by drawing a circle with the hallux in the air. Midfoot joint center location as well as kinematics was calculated based (a) on functional calibration, (b) via a simple midpoint approach, and (c) via linear regression. All typically developing participants were able to perform the CIR movement with sufficient ROM for calibration whereas 10 % of the participants with idiopathic PV foot deformity and 72 % of the participants with a neurogenic PV foot were not able to perform this movement adequately. Nevertheless, the regression approach led to almost the same location of the midfoot joint center compared to the functional method with similar kinematics. PV feet show substantially larger Forefoot/Hindfoot flexion and Forefoot/Hindfoot adduction in gait compared to TD feet. On top, feet with neurologic background show reduced ROM of these angles in gait. The CIR movement task may prove useful in future studies monitoring active ranges of ankle and midfoot motion since the kinematics of this task may also be directly assessed via the proposed regression approach.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.