Mariana R C Aquino, Richard E A van Emmerik, Priscila Albuquerque de Araújo, Thales R Souza, Luciano Sales Prado, Carlos Marcelo Pastre, Juliana M Ocarino, Sérgio T Fonseca
{"title":"Immediate and prolonged effects of different exercise intensities on the regularity of joint and coordinative patterns in runners.","authors":"Mariana R C Aquino, Richard E A van Emmerik, Priscila Albuquerque de Araújo, Thales R Souza, Luciano Sales Prado, Carlos Marcelo Pastre, Juliana M Ocarino, Sérgio T Fonseca","doi":"10.1016/j.jbiomech.2025.112504","DOIUrl":null,"url":null,"abstract":"<p><p>Runners who experience insufficient recovery time after training demands may have increased injury risk. Training and exercises can induce fatigue and altered movement patterns, which may best be assessed by examining the dynamics of the movement structure during a sports-related task. This crossover experimental study investigated the immediate and prolonged effects of exercise at different intensities on lower-limb joints and coordinative patterns during a 60-second single-leg squat task in 30 healthy runners. Joints (ankle, knee, hip) and coordination (ankle-knee, knee-hip continuous relative phase) angles were assessed between measurement times (pre, post, post24h, post48h) and protocols (moderate- and high-intensity run, control). A Statistical Parametric Mapping (SPM) one-way repeated measures ANOVA analyzed the joints and coordination time-normalized curves. Additionally, the entropy (i.e., regularity) of the entire time series was assessed by a two-way ANOVA. Lower ankle-knee coordination entropy was observed immediately after running protocols (moderate-intensity, -17.6 %, p = 0.003, η<sup>2</sup><sub>p</sub> = 0.21; high-intensity, -18.6 %, p = 0.001, η<sup>2</sup><sub>p</sub> = 0.22) and was also observed individually on the ankle and knee at post48h (p < 0.001, η<sup>2</sup><sub>p</sub> = 0.10). . No time or protocol effects were observed for SPM analysis. Runners demonstrated more regular (lower entropy) ankle-knee coordination after running protocols, which is related to a less adaptative pattern. In addition, increased regularity was observed on ankle and knee joint angles 48 h after protocols, suggesting an ongoing recovery process. The analysis of time-normalized kinematics was not sensitive to detect the effect of running on movement. Therefore, evaluating the coordination regularity during a single-leg test helped track the effect of exercise and fatigue, even without maximal effort.</p>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"180 ","pages":"112504"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiomech.2025.112504","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Runners who experience insufficient recovery time after training demands may have increased injury risk. Training and exercises can induce fatigue and altered movement patterns, which may best be assessed by examining the dynamics of the movement structure during a sports-related task. This crossover experimental study investigated the immediate and prolonged effects of exercise at different intensities on lower-limb joints and coordinative patterns during a 60-second single-leg squat task in 30 healthy runners. Joints (ankle, knee, hip) and coordination (ankle-knee, knee-hip continuous relative phase) angles were assessed between measurement times (pre, post, post24h, post48h) and protocols (moderate- and high-intensity run, control). A Statistical Parametric Mapping (SPM) one-way repeated measures ANOVA analyzed the joints and coordination time-normalized curves. Additionally, the entropy (i.e., regularity) of the entire time series was assessed by a two-way ANOVA. Lower ankle-knee coordination entropy was observed immediately after running protocols (moderate-intensity, -17.6 %, p = 0.003, η2p = 0.21; high-intensity, -18.6 %, p = 0.001, η2p = 0.22) and was also observed individually on the ankle and knee at post48h (p < 0.001, η2p = 0.10). . No time or protocol effects were observed for SPM analysis. Runners demonstrated more regular (lower entropy) ankle-knee coordination after running protocols, which is related to a less adaptative pattern. In addition, increased regularity was observed on ankle and knee joint angles 48 h after protocols, suggesting an ongoing recovery process. The analysis of time-normalized kinematics was not sensitive to detect the effect of running on movement. Therefore, evaluating the coordination regularity during a single-leg test helped track the effect of exercise and fatigue, even without maximal effort.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.