Optimizing the value of bioinks and robotics to advance in vivo bioprinting.

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Friederike Dehli, Oscar O'Dwyer Lancaster-Jones, Daniela Duarte Campos
{"title":"Optimizing the value of bioinks and robotics to advance in vivo bioprinting.","authors":"Friederike Dehli, Oscar O'Dwyer Lancaster-Jones, Daniela Duarte Campos","doi":"10.1016/j.copbio.2024.103251","DOIUrl":null,"url":null,"abstract":"<p><p>In vivo bioprinting strategies aim at facilitating immediate integration of engineered tissues with the host's biological system. As integral parts of current bioprinting technologies, bioinks and robotics should be holistically considered for new biomedical applications. This implies that chosen bioinks should exhibit rheological properties that are compatible with the fabrication method and vice versa, bioprinting tools might need to be redesigned and reconstructed to fit the characteristics of the needed bioinks that after solidification act as supporting matrices for living cells. In this piece, we identify current challenges in merging the best of these two principles, we highlight relevant studies that have addressed this need, and we propose ideas how to approach this challenge in the next years.</p>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"91 ","pages":"103251"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.copbio.2024.103251","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In vivo bioprinting strategies aim at facilitating immediate integration of engineered tissues with the host's biological system. As integral parts of current bioprinting technologies, bioinks and robotics should be holistically considered for new biomedical applications. This implies that chosen bioinks should exhibit rheological properties that are compatible with the fabrication method and vice versa, bioprinting tools might need to be redesigned and reconstructed to fit the characteristics of the needed bioinks that after solidification act as supporting matrices for living cells. In this piece, we identify current challenges in merging the best of these two principles, we highlight relevant studies that have addressed this need, and we propose ideas how to approach this challenge in the next years.

优化生物墨水和机器人技术的价值,推进体内生物打印。
体内生物打印策略旨在促进工程组织与宿主生物系统的即时整合。作为当前生物打印技术的组成部分,生物墨水和机器人技术应该全面考虑新的生物医学应用。这意味着所选择的生物墨水应该表现出与制造方法兼容的流变特性,反之亦然,生物打印工具可能需要重新设计和重建,以适应所需生物墨水的特性,这些特性在固化后作为活细胞的支撑基质。在这篇文章中,我们确定了当前在融合这两个原则的最佳方面所面临的挑战,我们强调了解决这一需求的相关研究,并提出了如何在未来几年应对这一挑战的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信