Protein thermal stability in the undergraduate biochemistry laboratory: Exploring protein thermal stability with yeast alcohol dehydrogenase.

IF 1.2 4区 教育学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alison Bates, Kathryn M Williams, Ann E Hagerman
{"title":"Protein thermal stability in the undergraduate biochemistry laboratory: Exploring protein thermal stability with yeast alcohol dehydrogenase.","authors":"Alison Bates, Kathryn M Williams, Ann E Hagerman","doi":"10.1002/bmb.21880","DOIUrl":null,"url":null,"abstract":"<p><p>We created a novel laboratory experience where undergraduate students explore the techniques used to study protein misfolding, unfolding, and aggregation. Despite the importance of protein misfolding and aggregation diseases, protein unfolding is not typically explored in undergraduate biochemistry laboratory classes. Yeast alcohol dehydrogenase (YADH) is used in the undergraduate biochemistry laboratory course at Miami University as the model system to explore protein overexpression and purification, bioinformatics, and enzyme characterization. Using one model protein across the entire semester allows the students to independently link topics introduced in the individual experiments; for example, students might draw connections between the thermal denaturation experiment and the requirement to keep the enzyme cold during a kinetics experiment. Students quantitated changes in secondary structure resulting from thermal denaturation by analyzing circular dichroism data. Monitoring the turbidity of a YADH solution with a temperature-controlled UV-Vis spectrometer was a reliable and easy method for undergraduate students to observe the thermally-induced aggregation of YADH. Together these experiments provide undergraduate students with first-hand experience in techniques to study protein unfolding and aggregation.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1002/bmb.21880","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We created a novel laboratory experience where undergraduate students explore the techniques used to study protein misfolding, unfolding, and aggregation. Despite the importance of protein misfolding and aggregation diseases, protein unfolding is not typically explored in undergraduate biochemistry laboratory classes. Yeast alcohol dehydrogenase (YADH) is used in the undergraduate biochemistry laboratory course at Miami University as the model system to explore protein overexpression and purification, bioinformatics, and enzyme characterization. Using one model protein across the entire semester allows the students to independently link topics introduced in the individual experiments; for example, students might draw connections between the thermal denaturation experiment and the requirement to keep the enzyme cold during a kinetics experiment. Students quantitated changes in secondary structure resulting from thermal denaturation by analyzing circular dichroism data. Monitoring the turbidity of a YADH solution with a temperature-controlled UV-Vis spectrometer was a reliable and easy method for undergraduate students to observe the thermally-induced aggregation of YADH. Together these experiments provide undergraduate students with first-hand experience in techniques to study protein unfolding and aggregation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry and Molecular Biology Education
Biochemistry and Molecular Biology Education 生物-生化与分子生物学
CiteScore
2.60
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including: Innovative techniques in teaching and learning. New pedagogical approaches. Research in biochemistry and molecular biology education. Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc. Historical Reviews describing "Paths to Discovery". Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics. Reviews of relevant textbooks, software, and websites. Descriptions of software for educational use. Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信