Alan Carvalho de Sousa Araujo, Andressa Coimbra Pereira, Robson Matheus Marreiro Gomes, Juan Rafael Buitrago Ramirez, Karoline da Silva Noda, Luan Gustavo Santos, Juliana Machado Latorres, Daniela Fernandes Ramos, José María Monserrat, Vilásia Guimarães Martins
{"title":"Protein hydrolysates derived from superworm (Zophobas morio): Composition, bioactivity, and techno-functional properties.","authors":"Alan Carvalho de Sousa Araujo, Andressa Coimbra Pereira, Robson Matheus Marreiro Gomes, Juan Rafael Buitrago Ramirez, Karoline da Silva Noda, Luan Gustavo Santos, Juliana Machado Latorres, Daniela Fernandes Ramos, José María Monserrat, Vilásia Guimarães Martins","doi":"10.1016/j.ijbiomac.2025.139668","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to produce protein hydrolysates from superworm (Zophobas morio) flour using the enzymes alcalase (HA), protamex (HP), or flavourzyme (HF), and to characterize their nutritional composition, techno-functional properties, bioactive capacity, and bioaccessibility index. The enzymatic process increased the total amino acid and crude protein contents of the hydrolysates by approximately 36 % and 46 %, respectively, generating better foaming capacity, oil retention, and emulsification capacity, when compared to raw flour. Although 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical capture was similar between the hydrolysates, HA (1479,66 μM FeSO<sub>4</sub>/g) and HP (1514,66 μM FeSO<sub>4</sub>/g) showed greater antimicrobial and iron reducing power (FRAP) activity, while HF has a higher scavenging efficiency for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (27.53 %). The best antimicrobial activity was observed for HA against Vibrio corallilyticus (400 mg/mL), and HP showed a better antioxidant response scavenging for DPPH radical. The antioxidant capacity against ABTS radical after in vitro simulation of gastrointestinal digestion (GID) was as follows: HA (79.07 ± 1.53 %), HP (74.65 ± 5.85 %), and HF (57.95 ± 8.31 %). Therefore, insect flour is a promising ingredient for the production of protein hydrolysates and their application in animal and human feeds.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"139668"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.139668","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to produce protein hydrolysates from superworm (Zophobas morio) flour using the enzymes alcalase (HA), protamex (HP), or flavourzyme (HF), and to characterize their nutritional composition, techno-functional properties, bioactive capacity, and bioaccessibility index. The enzymatic process increased the total amino acid and crude protein contents of the hydrolysates by approximately 36 % and 46 %, respectively, generating better foaming capacity, oil retention, and emulsification capacity, when compared to raw flour. Although 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical capture was similar between the hydrolysates, HA (1479,66 μM FeSO4/g) and HP (1514,66 μM FeSO4/g) showed greater antimicrobial and iron reducing power (FRAP) activity, while HF has a higher scavenging efficiency for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (27.53 %). The best antimicrobial activity was observed for HA against Vibrio corallilyticus (400 mg/mL), and HP showed a better antioxidant response scavenging for DPPH radical. The antioxidant capacity against ABTS radical after in vitro simulation of gastrointestinal digestion (GID) was as follows: HA (79.07 ± 1.53 %), HP (74.65 ± 5.85 %), and HF (57.95 ± 8.31 %). Therefore, insect flour is a promising ingredient for the production of protein hydrolysates and their application in animal and human feeds.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.