Effects of reconsolidation on cyclic deformation behaviours of a kaolin clay

IF 5.6 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Zhixuan Liang, Mingyue Kong, Ying Liu, Maosong Huang, Jian Gong
{"title":"Effects of reconsolidation on cyclic deformation behaviours of a kaolin clay","authors":"Zhixuan Liang,&nbsp;Mingyue Kong,&nbsp;Ying Liu,&nbsp;Maosong Huang,&nbsp;Jian Gong","doi":"10.1007/s11440-024-02399-5","DOIUrl":null,"url":null,"abstract":"<div><p>Subgrades may be subjected to intermittent cyclic loads such as traffic loads. Under these loading conditions, excess pore water pressure can accumulate in clayey soils during cyclic loading period and dissipate during resting time. The deformation behaviour of clayey soil after reconsolidation process may be different from that under consecutive cyclic loading. A series of undrained cyclic triaxial tests, including reconsolidation process between cyclic loading stages, were performed on kaolin clay. The axial strain accumulation, excess pore water pressure accumulation, deviatoric stress–strain loop and resilience modulus under different cyclic stress ratios, initial confining pressures and degrees of reconsolidation were discussed and presented. Test results show that the reconsolidation process has significant effects on the deformation characteristics of clayey soil. The coupling effects of change of void ratio and effective mean stress result in a non-monotonic relationship between normalised total axial strain and degree of reconsolidation. In addition, an increase in the degree of reconsolidation leads to an increase in the normalised excess pore water pressure increment during 2nd cyclic loading stage, regardless of cyclic stress ratio and initial confining pressure. Furthermore, the steady resilience modulus at the end of each cyclic loading stage depends on the effective cyclic stress ratio and initial confining pressure, irrespective of reconsolidation process.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 1","pages":"149 - 165"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02399-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Subgrades may be subjected to intermittent cyclic loads such as traffic loads. Under these loading conditions, excess pore water pressure can accumulate in clayey soils during cyclic loading period and dissipate during resting time. The deformation behaviour of clayey soil after reconsolidation process may be different from that under consecutive cyclic loading. A series of undrained cyclic triaxial tests, including reconsolidation process between cyclic loading stages, were performed on kaolin clay. The axial strain accumulation, excess pore water pressure accumulation, deviatoric stress–strain loop and resilience modulus under different cyclic stress ratios, initial confining pressures and degrees of reconsolidation were discussed and presented. Test results show that the reconsolidation process has significant effects on the deformation characteristics of clayey soil. The coupling effects of change of void ratio and effective mean stress result in a non-monotonic relationship between normalised total axial strain and degree of reconsolidation. In addition, an increase in the degree of reconsolidation leads to an increase in the normalised excess pore water pressure increment during 2nd cyclic loading stage, regardless of cyclic stress ratio and initial confining pressure. Furthermore, the steady resilience modulus at the end of each cyclic loading stage depends on the effective cyclic stress ratio and initial confining pressure, irrespective of reconsolidation process.

Abstract Image

再固结对高岭土循环变形特性的影响
路基可能承受间歇性循环荷载,例如交通荷载。在这些加载条件下,粘土中超孔隙水压力在循环加载期间积累,在静置期间消散。粘土在再固结过程后的变形行为可能与连续循环荷载作用下的变形行为不同。对高岭土进行了一系列不排水循环三轴试验,包括循环加载阶段之间的再固结过程。讨论了不同循环应力比、初始围压和再固结程度下的轴向应变累积、超孔隙水压力累积、偏应力-应变环和回弹模量。试验结果表明,再固结过程对粘性土的变形特性有显著影响。孔隙率变化与有效平均应力的耦合作用导致归一化总轴向应变与再固结程度呈非单调关系。此外,无论循环应力比和初始围压如何,再固结程度的增加导致第二次循环加载阶段的正态超孔隙水压力增量增加。此外,在每个循环加载阶段结束时的稳定回弹模量取决于有效循环应力比和初始围压,而与再固结过程无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geotechnica
Acta Geotechnica ENGINEERING, GEOLOGICAL-
CiteScore
9.90
自引率
17.50%
发文量
297
审稿时长
4 months
期刊介绍: Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信