Localized Bishop-Phelps-Bollobás type properties for minimum norm and Crawford number attaining operators

IF 0.8 Q2 MATHEMATICS
Uday Shankar Chakraborty
{"title":"Localized Bishop-Phelps-Bollobás type properties for minimum norm and Crawford number attaining operators","authors":"Uday Shankar Chakraborty","doi":"10.1007/s43036-024-00415-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the approximate minimizing property (AMp) for operators, a localized Bishop-Phelps-Bollobás type property with respect to the minimum norm. Given Banach spaces <i>X</i> and <i>Y</i> we define a new class <span>\\(\\mathcal{A}\\mathcal{M}(X,Y)\\)</span> of bounded linear operators from <i>X</i> to <i>Y</i> for which the pair (<i>X</i>, <i>Y</i>) satisfies the AMp. We provide a necessary and sufficient condition for non-injective operators from <i>X</i> to <i>Y</i> to be in the class <span>\\(\\mathcal{A}\\mathcal{M}(X,Y)\\)</span>. We also prove that <i>X</i> is finite dimensional if and only if for every Banach space <i>Y</i>, (<i>X</i>, <i>Y</i>) has the AMp for all minimum norm attaining operators from <i>X</i> to <i>Y</i> if and only if for every Banach space <i>Y</i>, (<i>Y</i>, <i>X</i>) has the AMp for all minimum norm attaining operators from <i>Y</i> to <i>X</i>. We also study the AMp with respect to Crawford number called AMp-<i>c</i> for operators.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00415-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the approximate minimizing property (AMp) for operators, a localized Bishop-Phelps-Bollobás type property with respect to the minimum norm. Given Banach spaces X and Y we define a new class \(\mathcal{A}\mathcal{M}(X,Y)\) of bounded linear operators from X to Y for which the pair (XY) satisfies the AMp. We provide a necessary and sufficient condition for non-injective operators from X to Y to be in the class \(\mathcal{A}\mathcal{M}(X,Y)\). We also prove that X is finite dimensional if and only if for every Banach space Y, (XY) has the AMp for all minimum norm attaining operators from X to Y if and only if for every Banach space Y, (YX) has the AMp for all minimum norm attaining operators from Y to X. We also study the AMp with respect to Crawford number called AMp-c for operators.

最小范数和克劳福德数获得算子的本地化Bishop-Phelps-Bollobás类型属性
本文研究了算子的近似极小性,这是一个关于最小范数的局域Bishop-Phelps-Bollobás型性质。给定Banach空间X和Y,我们定义了一个由X到Y的有界线性算子组成的新类\(\mathcal{A}\mathcal{M}(X,Y)\),该类中(X, Y)对满足AMp。我们给出了从X到Y的非内射算子在\(\mathcal{A}\mathcal{M}(X,Y)\)类中的充分必要条件。我们还证明了X是有限维的,当且仅当对于每一个巴拿赫空间Y, (X, Y)具有从X到Y的所有最小范数获得算子的AMp,当且仅当对于每一个巴拿赫空间Y, (Y, X)具有从Y到X的所有最小范数获得算子的AMp,我们还研究了算子的AMp关于克劳福德数的AMp-c。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信