Ground State Energy of Dilute Bose Gases in 1D

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Johannes Agerskov, Robin Reuvers, Jan Philip Solovej
{"title":"Ground State Energy of Dilute Bose Gases in 1D","authors":"Johannes Agerskov,&nbsp;Robin Reuvers,&nbsp;Jan Philip Solovej","doi":"10.1007/s00220-024-05193-2","DOIUrl":null,"url":null,"abstract":"<div><p>We study the ground state energy of a gas of 1D bosons with density <span>\\(\\rho \\)</span>, interacting through a general, repulsive 2-body potential with scattering length <i>a</i>, in the dilute limit <span>\\(\\rho |a|\\ll 1\\)</span>. The first terms in the expansion of the thermodynamic energy density are <span>\\((\\pi ^2\\rho ^3/3)(1+2\\rho a)\\)</span>, where the leading order is the 1D free Fermi gas. This result covers the Tonks–Girardeau limit of the Lieb–Liniger model as a special case, but given the possibility that <span>\\(a&gt;0\\)</span>, it also applies to potentials that differ significantly from a delta function. We include extensions to spinless fermions and 1D anyonic symmetries, and discuss an application to confined 3D gases.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05193-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the ground state energy of a gas of 1D bosons with density \(\rho \), interacting through a general, repulsive 2-body potential with scattering length a, in the dilute limit \(\rho |a|\ll 1\). The first terms in the expansion of the thermodynamic energy density are \((\pi ^2\rho ^3/3)(1+2\rho a)\), where the leading order is the 1D free Fermi gas. This result covers the Tonks–Girardeau limit of the Lieb–Liniger model as a special case, but given the possibility that \(a>0\), it also applies to potentials that differ significantly from a delta function. We include extensions to spinless fermions and 1D anyonic symmetries, and discuss an application to confined 3D gases.

一维中稀释玻色气体的基态能
我们研究了密度为\(\rho \)的一维玻色子气体的基态能量,在稀释极限\(\rho |a|\ll 1\)下,通过散射长度为a的一般排斥二体势相互作用。热力学能量密度膨胀的第一项是\((\pi ^2\rho ^3/3)(1+2\rho a)\),其中第一阶是一维自由费米气体。这个结果涵盖了Lieb-Liniger模型的Tonks-Girardeau极限作为一个特例,但考虑到\(a>0\)的可能性,它也适用于与delta函数显著不同的势。我们包括了对无自旋费米子和一维任意子对称性的扩展,并讨论了在受限三维气体中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信