Magnetic Flatness and E. Hopf’s Theorem for Magnetic Systems

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Valerio Assenza, James Marshall Reber, Ivo Terek
{"title":"Magnetic Flatness and E. Hopf’s Theorem for Magnetic Systems","authors":"Valerio Assenza,&nbsp;James Marshall Reber,&nbsp;Ivo Terek","doi":"10.1007/s00220-024-05166-5","DOIUrl":null,"url":null,"abstract":"<div><p>Using the notion of magnetic curvature recently introduced by the first author, we extend E. Hopf’s theorem to the setting of magnetic systems. Namely, we prove that if the magnetic flow on the <i>s</i>-sphere bundle is without conjugate points, then the total magnetic curvature is non-positive, and vanishes if and only if the magnetic system is magnetically flat. We then prove that magnetic flatness is a rigid condition, in the sense that it only occurs when either the magnetic form is trivial and the metric is flat, or when the magnetic system is Kähler, the metric has constant negative sectional holomorphic curvature, and <i>s</i> equals the Mañé critical value.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05166-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05166-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using the notion of magnetic curvature recently introduced by the first author, we extend E. Hopf’s theorem to the setting of magnetic systems. Namely, we prove that if the magnetic flow on the s-sphere bundle is without conjugate points, then the total magnetic curvature is non-positive, and vanishes if and only if the magnetic system is magnetically flat. We then prove that magnetic flatness is a rigid condition, in the sense that it only occurs when either the magnetic form is trivial and the metric is flat, or when the magnetic system is Kähler, the metric has constant negative sectional holomorphic curvature, and s equals the Mañé critical value.

磁系统的磁平坦度与E. Hopf定理
利用第一作者最近引入的磁曲率的概念,我们将E. Hopf定理推广到磁系统的集合。也就是说,我们证明了如果s球束上的磁流没有共轭点,那么总磁曲率是非正的,并且当且仅当磁系统是磁平的时,总磁曲率消失。然后,我们证明了磁平坦性是一个刚性条件,在某种意义上,它只发生在磁性形式平凡且度规平坦的情况下,或者当磁性系统为Kähler时,度规具有恒定的负截面全纯曲率,并且s等于Mañé临界值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信