{"title":"Interfacial cavitation during peeling of soft viscoelastic adhesives","authors":"Xingwei Yang, Huiqi Shi, Yuan Qi, Rong Long","doi":"10.1007/s10704-024-00834-y","DOIUrl":null,"url":null,"abstract":"<div><p>Peel tests are commonly used to characterize the performance of adhesive tapes. The force required to peel a tape from a substrate depends on not only interface adhesion but also mechanics of the tape. Typically, adhesive tapes consist of a stiff backing film and a layer of adhesive material that is soft and viscoelastic. While mechanics of the backing film has been extensively studied, mechanics of the soft adhesive layer is less understood. In this work, finite element simulations are carried out to study large deformation of the soft adhesive layer during 90-degree peeling and its implication on the peel force. We find that debonding can occur ahead of the peel front when the peel front is still adhered to the substrate. This phenomenon, referred to as “interfacial cavitation”, causes the peel front to advance in a stepwise manner despite that a constant peeling velocity is prescribed. Consequently, the peel force follows an oscillatory history resembling the “stick–slip” behavior widely observed in peel tests. Further investigations reveal that interfacial cavitation originates from a non-monotonic distribution of interfacial traction ahead of the peel front. Moreover, emergence of interfacial cavitation can be controlled by three factors: interfacial slip, adhesive layer thickness and peeling velocity. These results can provide insights towards designing adhesive tapes with desired adhesion performance or release mechanisms.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00834-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Peel tests are commonly used to characterize the performance of adhesive tapes. The force required to peel a tape from a substrate depends on not only interface adhesion but also mechanics of the tape. Typically, adhesive tapes consist of a stiff backing film and a layer of adhesive material that is soft and viscoelastic. While mechanics of the backing film has been extensively studied, mechanics of the soft adhesive layer is less understood. In this work, finite element simulations are carried out to study large deformation of the soft adhesive layer during 90-degree peeling and its implication on the peel force. We find that debonding can occur ahead of the peel front when the peel front is still adhered to the substrate. This phenomenon, referred to as “interfacial cavitation”, causes the peel front to advance in a stepwise manner despite that a constant peeling velocity is prescribed. Consequently, the peel force follows an oscillatory history resembling the “stick–slip” behavior widely observed in peel tests. Further investigations reveal that interfacial cavitation originates from a non-monotonic distribution of interfacial traction ahead of the peel front. Moreover, emergence of interfacial cavitation can be controlled by three factors: interfacial slip, adhesive layer thickness and peeling velocity. These results can provide insights towards designing adhesive tapes with desired adhesion performance or release mechanisms.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.