On the Fisher Infinitesimal Model Without Variability

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Amic Frouvelle, Cécile Taing
{"title":"On the Fisher Infinitesimal Model Without Variability","authors":"Amic Frouvelle,&nbsp;Cécile Taing","doi":"10.1007/s10955-024-03386-6","DOIUrl":null,"url":null,"abstract":"<div><p>We study the long-time behavior of solutions to a kinetic equation inspired by a model of sexual populations structured in phenotypes. The model features a nonlinear integral reproduction operator derived from the Fisher infinitesimal operator and a trait-dependent selection term. The reproduction operator describes here the inheritance of the mean parental traits to the offspring without variability. We show that, under assumptions on the growth of the selection rate, Dirac masses are stable around phenotypes for which the difference between the selection rate and its minimum value is less than <span>\\(\\frac{1}{2}\\)</span>. Moreover, we prove the convergence in some Fourier-based distance of the centered and rescaled solution to a stationary profile under some conditions on the initial moments of the solution.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03386-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the long-time behavior of solutions to a kinetic equation inspired by a model of sexual populations structured in phenotypes. The model features a nonlinear integral reproduction operator derived from the Fisher infinitesimal operator and a trait-dependent selection term. The reproduction operator describes here the inheritance of the mean parental traits to the offspring without variability. We show that, under assumptions on the growth of the selection rate, Dirac masses are stable around phenotypes for which the difference between the selection rate and its minimum value is less than \(\frac{1}{2}\). Moreover, we prove the convergence in some Fourier-based distance of the centered and rescaled solution to a stationary profile under some conditions on the initial moments of the solution.

无变率的Fisher无穷小模型
我们研究了一个动力学方程的解决方案的长期行为,灵感来自于表现型结构的性种群模型。该模型具有一个由Fisher无穷小算子衍生而来的非线性积分复制算子和一个性状依赖的选择项。繁殖算子在这里描述的是平均亲本性状无变异地遗传给后代。我们表明,在选择率增长的假设下,Dirac质量在选择率与其最小值之间的差异小于\(\frac{1}{2}\)的表型周围是稳定的。此外,在解的初始矩的某些条件下,我们还证明了在一定傅里叶距离上的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信