B-Twisted Gaiotto–Witten Theory and Topological Quantum Field Theory

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Niklas Garner, Nathan Geer, Matthew B. Young
{"title":"B-Twisted Gaiotto–Witten Theory and Topological Quantum Field Theory","authors":"Niklas Garner,&nbsp;Nathan Geer,&nbsp;Matthew B. Young","doi":"10.1007/s00220-024-05211-3","DOIUrl":null,"url":null,"abstract":"<div><p>We develop representation theoretic techniques to construct three dimensional non-semisimple topological quantum field theories which model homologically truncated topological B-twists of abelian Gaiotto–Witten theory with linear matter. Our constructions are based on relative modular structures on the category of weight modules over an unrolled quantization of a Lie superalgebra. The Lie superalgebra, originally defined by Gaiotto and Witten, is associated to a complex symplectic representation of a metric abelian Lie algebra. The physical theories we model admit alternative realizations as Chern–Simons–Rozansky–Witten theories and supergroup Chern–Simons theories and include as particular examples global forms of <span>\\(\\mathfrak {gl}(1 \\vert 1)\\)</span>-Chern–Simons theory and toral Chern–Simons theory. Fundamental to our approach is the systematic incorporation of non-genuine line operators which source flat connections for the topological flavour symmetry of the theory.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05211-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We develop representation theoretic techniques to construct three dimensional non-semisimple topological quantum field theories which model homologically truncated topological B-twists of abelian Gaiotto–Witten theory with linear matter. Our constructions are based on relative modular structures on the category of weight modules over an unrolled quantization of a Lie superalgebra. The Lie superalgebra, originally defined by Gaiotto and Witten, is associated to a complex symplectic representation of a metric abelian Lie algebra. The physical theories we model admit alternative realizations as Chern–Simons–Rozansky–Witten theories and supergroup Chern–Simons theories and include as particular examples global forms of \(\mathfrak {gl}(1 \vert 1)\)-Chern–Simons theory and toral Chern–Simons theory. Fundamental to our approach is the systematic incorporation of non-genuine line operators which source flat connections for the topological flavour symmetry of the theory.

b -扭曲Gaiotto-Witten理论与拓扑量子场论
我们发展了表示理论技术,构建了三维非半简单拓扑量子场理论,该理论模拟了线性物质的阿贝耳盖约托-威腾理论的同调截断拓扑b -扭转。我们的构造是基于李超代数的展开量化上的权模范畴上的相对模结构。李超代数最初是由Gaiotto和Witten定义的,它与度量阿贝尔李代数的复辛表示有关。我们所建立的物理理论模型承认了陈-西蒙斯-罗赞斯基-威腾理论和超群陈-西蒙斯理论的替代实现,并作为特殊的例子包括\(\mathfrak {gl}(1 \vert 1)\) -陈-西蒙斯理论和总陈-西蒙斯理论的整体形式。我们方法的基础是系统地结合非真线算子,它们为理论的拓扑对称性提供平面连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信