Lieb–Thirring Inequality for the 2D Pauli Operator

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Rupert L. Frank, Hynek Kovařík
{"title":"Lieb–Thirring Inequality for the 2D Pauli Operator","authors":"Rupert L. Frank,&nbsp;Hynek Kovařík","doi":"10.1007/s00220-024-05177-2","DOIUrl":null,"url":null,"abstract":"<div><p>By the Aharonov–Casher theorem, the Pauli operator <i>P</i> has no zero eigenvalue when the normalized magnetic flux <span>\\(\\alpha \\)</span> satisfies <span>\\(|\\alpha |&lt;1\\)</span>, but it does have a zero energy resonance. We prove that in this case a Lieb–Thirring inequality for the <span>\\(\\gamma \\)</span>-th moment of the eigenvalues of <span>\\(P+V\\)</span> is valid under the optimal restrictions <span>\\(\\gamma \\ge |\\alpha |\\)</span> and <span>\\(\\gamma &gt;0\\)</span>. Besides the usual semiclassical integral, the right side of our inequality involves an integral where the zero energy resonance state appears explicitly. Our inequality improves earlier works that were restricted to moments of order <span>\\(\\gamma \\ge 1\\)</span>.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05177-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05177-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

By the Aharonov–Casher theorem, the Pauli operator P has no zero eigenvalue when the normalized magnetic flux \(\alpha \) satisfies \(|\alpha |<1\), but it does have a zero energy resonance. We prove that in this case a Lieb–Thirring inequality for the \(\gamma \)-th moment of the eigenvalues of \(P+V\) is valid under the optimal restrictions \(\gamma \ge |\alpha |\) and \(\gamma >0\). Besides the usual semiclassical integral, the right side of our inequality involves an integral where the zero energy resonance state appears explicitly. Our inequality improves earlier works that were restricted to moments of order \(\gamma \ge 1\).

二维泡利算子的Lieb-Thirring不等式
根据Aharonov-Casher定理,当归一化磁通量\(\alpha \)满足\(|\alpha |<1\)时,泡利算子P不具有零特征值,但它确实具有零能量共振。在这种情况下,我们证明了在最优约束\(\gamma \ge |\alpha |\)和\(\gamma >0\)下,\(P+V\)的特征值的\(\gamma \) -th矩的Lieb-Thirring不等式是成立的。除了通常的半经典积分外,不等式的右侧还包含一个零能量共振状态显式出现的积分。我们的不等式改进了以前仅限于顺序时刻的作品\(\gamma \ge 1\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信