{"title":"Rigidity Aspects of Penrose’s Singularity Theorem","authors":"Gregory Galloway, Eric Ling","doi":"10.1007/s00220-024-05210-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study rigidity aspects of Penrose’s singularity theorem. Specifically, we aim to answer the following question: if a spacetime satisfies the hypotheses of Penrose’s singularity theorem except with weakly trapped surfaces instead of trapped surfaces, then what can be said about the global spacetime structure if the spacetime is null geodesically complete? In this setting, we show that we obtain a foliation of MOTS which generate totally geodesic null hypersurfaces. Depending on our starting assumptions, we obtain either local or global rigidity results. We apply our arguments to cosmological spacetimes (i.e., spacetimes with compact Cauchy surfaces) and scenarios involving topological censorship.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05210-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05210-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study rigidity aspects of Penrose’s singularity theorem. Specifically, we aim to answer the following question: if a spacetime satisfies the hypotheses of Penrose’s singularity theorem except with weakly trapped surfaces instead of trapped surfaces, then what can be said about the global spacetime structure if the spacetime is null geodesically complete? In this setting, we show that we obtain a foliation of MOTS which generate totally geodesic null hypersurfaces. Depending on our starting assumptions, we obtain either local or global rigidity results. We apply our arguments to cosmological spacetimes (i.e., spacetimes with compact Cauchy surfaces) and scenarios involving topological censorship.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.