First Passage Percolation, Local Uniqueness for Interlacements and Capacity of Random Walk

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Alexis Prévost
{"title":"First Passage Percolation, Local Uniqueness for Interlacements and Capacity of Random Walk","authors":"Alexis Prévost","doi":"10.1007/s00220-024-05195-0","DOIUrl":null,"url":null,"abstract":"<div><p>The study of first passage percolation (FPP) for the random interlacements model has been initiated in Andres and Prévost (Ann Appl Probab 34(2):1846–1895), where it is shown that on <span>\\(\\mathbb {Z}^d\\)</span>, <span>\\(d\\ge 3\\)</span>, the FPP distance is comparable to the graph distance with high probability. In this article, we give an asymptotically sharp lower bound on this last probability, which additionally holds on a large class of transient graphs with polynomial volume growth and polynomial decay of the Green function. When considering the interlacement set in the low-intensity regime, the previous bound is in fact valid throughout the near-critical phase. In low dimension, we also present two applications of this FPP result: sharp large deviation bounds on local uniqueness of random interlacements, and on the capacity of a random walk in a ball.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05195-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05195-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The study of first passage percolation (FPP) for the random interlacements model has been initiated in Andres and Prévost (Ann Appl Probab 34(2):1846–1895), where it is shown that on \(\mathbb {Z}^d\), \(d\ge 3\), the FPP distance is comparable to the graph distance with high probability. In this article, we give an asymptotically sharp lower bound on this last probability, which additionally holds on a large class of transient graphs with polynomial volume growth and polynomial decay of the Green function. When considering the interlacement set in the low-intensity regime, the previous bound is in fact valid throughout the near-critical phase. In low dimension, we also present two applications of this FPP result: sharp large deviation bounds on local uniqueness of random interlacements, and on the capacity of a random walk in a ball.

第一通道渗透、交错的局部唯一性与随机游走容量
Andres和pracimvost (Ann Appl Probab 34(2): 1846-1895)对随机穿插模型的第一通道渗透(FPP)进行了研究,在\(\mathbb {Z}^d\), \(d\ge 3\)上,FPP距离与图距离有高概率相当。在本文中,我们给出了最后一个概率的渐近尖锐下界,该下界还适用于大量具有多项式体积增长和Green函数的多项式衰减的瞬态图。当考虑低强度区域的交错集时,前一个边界实际上在整个近临界阶段都有效。在低维情况下,我们也给出了FPP结果的两种应用:随机交错局部唯一性的大偏差边界和球内随机游动的容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信