Interactions, properties and lipid digestibility of attractive Pickering emulgels formed by sequential addition of oppositely charged nanopolysaccharides†
Shasha Guo, Jun Li, Xingxiang Ji, Wenjuan Jiao, Zhangmin Wan, Luyao Huang, Xun Niu, Junhua Xu, Ying Liu, Jianan Zheng, Bin Li, Long Bai, Yi Lu and Orlando J. Rojas
{"title":"Interactions, properties and lipid digestibility of attractive Pickering emulgels formed by sequential addition of oppositely charged nanopolysaccharides†","authors":"Shasha Guo, Jun Li, Xingxiang Ji, Wenjuan Jiao, Zhangmin Wan, Luyao Huang, Xun Niu, Junhua Xu, Ying Liu, Jianan Zheng, Bin Li, Long Bai, Yi Lu and Orlando J. Rojas","doi":"10.1039/D4GC05700G","DOIUrl":null,"url":null,"abstract":"<p >Emulsion gels (emulgels) have emerged as cost-effective and versatile platforms in formulation engineering. In this study, we introduce Attractive Pickering Emulgels (APEGs), stabilized by the synergistic action of two oppositely charged green nanoparticles, <em>e.g.</em>, chitin nanofibers (ChNF) and cellulose nanocrystals (CNC). The CNC, featuring anionic sulfate half-ester groups, and the cationic ChNF, possessing amine groups, form adhesive bridging networks within the continuous aqueous phase, effectively inhibiting oil droplet coalescence. This network supports micro-clustering, significantly increasing the effective droplet volume fraction by entrapping substantial amounts of the continuous phase. Consequently, the emulgels demonstrate a robust viscoelastic response and effectively modulate lipid digestibility, as evidenced by a 30% reduction in free fatty acid (FFA) release at high oil fractions (70 wt%) during <em>in vitro</em> digestion. The stabilization mechanism relies on noncovalent interactions and nanoparticle coassembly, validated through quartz crystal microgravimetry and molecular dynamics simulations. APEGs present significant potential for advancing sustainable nanotechnologies in pharmaceutical, food, and health formulations.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 3","pages":" 650-659"},"PeriodicalIF":9.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc05700g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Emulsion gels (emulgels) have emerged as cost-effective and versatile platforms in formulation engineering. In this study, we introduce Attractive Pickering Emulgels (APEGs), stabilized by the synergistic action of two oppositely charged green nanoparticles, e.g., chitin nanofibers (ChNF) and cellulose nanocrystals (CNC). The CNC, featuring anionic sulfate half-ester groups, and the cationic ChNF, possessing amine groups, form adhesive bridging networks within the continuous aqueous phase, effectively inhibiting oil droplet coalescence. This network supports micro-clustering, significantly increasing the effective droplet volume fraction by entrapping substantial amounts of the continuous phase. Consequently, the emulgels demonstrate a robust viscoelastic response and effectively modulate lipid digestibility, as evidenced by a 30% reduction in free fatty acid (FFA) release at high oil fractions (70 wt%) during in vitro digestion. The stabilization mechanism relies on noncovalent interactions and nanoparticle coassembly, validated through quartz crystal microgravimetry and molecular dynamics simulations. APEGs present significant potential for advancing sustainable nanotechnologies in pharmaceutical, food, and health formulations.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.