{"title":"Sequential Linear Programming With Adaptive Linearization Error Limits for All-Time Feasibility","authors":"Dorijan Leko;Mario Vašak","doi":"10.1109/LCSYS.2024.3519547","DOIUrl":null,"url":null,"abstract":"This letter presents an enhanced Trust Region Method (TRM) for Sequential Linear Programming (SLP) designed to improve the initial feasible solution to a constrained nonlinear programming problem while maintaining the interim solutions feasibility throughout the SLP iterations. The method employs a polytopic sub-approximation of the feasible region, defined around the interim solution as a level set based on variable limits for the linearization error. This polytopic feasible region is established by using a trust region that ensures that maximum limits of the linearization errors are respected. The method adaptively adjusts the size of the feasible region during iterations to achieve convergence to a local optimum by employing variable linearization error limits. Local convergence is attained by reducing the size of the trust radius. A case study illustrates the effectiveness of the proposed method, which is compared to the benchmark TRM that uses heuristic limits on the permissible changes in manipulated variables.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3051-3056"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806887","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806887/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents an enhanced Trust Region Method (TRM) for Sequential Linear Programming (SLP) designed to improve the initial feasible solution to a constrained nonlinear programming problem while maintaining the interim solutions feasibility throughout the SLP iterations. The method employs a polytopic sub-approximation of the feasible region, defined around the interim solution as a level set based on variable limits for the linearization error. This polytopic feasible region is established by using a trust region that ensures that maximum limits of the linearization errors are respected. The method adaptively adjusts the size of the feasible region during iterations to achieve convergence to a local optimum by employing variable linearization error limits. Local convergence is attained by reducing the size of the trust radius. A case study illustrates the effectiveness of the proposed method, which is compared to the benchmark TRM that uses heuristic limits on the permissible changes in manipulated variables.