On Generating Explanations for Reinforcement Learning Policies: An Empirical Study

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Mikihisa Yuasa;Huy T. Tran;Ramavarapu S. Sreenivas
{"title":"On Generating Explanations for Reinforcement Learning Policies: An Empirical Study","authors":"Mikihisa Yuasa;Huy T. Tran;Ramavarapu S. Sreenivas","doi":"10.1109/LCSYS.2024.3519301","DOIUrl":null,"url":null,"abstract":"Explaining reinforcement learning policies is important for deploying them in real-world scenarios. We introduce a set of linear temporal logic formulae designed to provide such explanations, and an algorithm for searching through those formulae for the one that best explains a given policy. Our key idea is to compare action distributions from the target policy with those from policies optimized for candidate explanations. This comparison provides more insight into the target policy than existing methods and avoids inference of “catch-all” explanations. We demonstrate our method in a simulated game of capture-the-flag, a car-parking environment, and a robot navigation task.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3027-3032"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804622/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Explaining reinforcement learning policies is important for deploying them in real-world scenarios. We introduce a set of linear temporal logic formulae designed to provide such explanations, and an algorithm for searching through those formulae for the one that best explains a given policy. Our key idea is to compare action distributions from the target policy with those from policies optimized for candidate explanations. This comparison provides more insight into the target policy than existing methods and avoids inference of “catch-all” explanations. We demonstrate our method in a simulated game of capture-the-flag, a car-parking environment, and a robot navigation task.
关于生成强化学习策略解释的实证研究
解释强化学习策略对于在现实场景中部署它们非常重要。我们引入了一组线性时间逻辑公式,旨在提供这样的解释,以及一个算法,用于搜索这些公式中最能解释给定策略的公式。我们的关键思想是比较目标策略的操作分布与针对候选解释优化的策略的操作分布。与现有方法相比,这种比较提供了对目标策略的更深入的了解,并避免了“一刀切”解释的推断。我们在一个模拟夺旗游戏、一个停车场环境和一个机器人导航任务中演示了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信