Optimal Risk-Sensitive Scheduling Policies for Remote Estimation of Autoregressive Markov Processes

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Manali Dutta;Rahul Singh
{"title":"Optimal Risk-Sensitive Scheduling Policies for Remote Estimation of Autoregressive Markov Processes","authors":"Manali Dutta;Rahul Singh","doi":"10.1109/LCSYS.2024.3522196","DOIUrl":null,"url":null,"abstract":"We consider a remote estimation setup, where data packets containing sensor observations are transmitted over a Gilbert-Elliot channel to a remote estimator, and design scheduling policies that minimize a risk-sensitive cost, which is equal to the expected value of the exponential of the cumulative cost incurred during a finite horizon, that is the sum of the cumulative transmission power consumed, and the cumulative squared estimation error. More specifically, consider a sensor that observes a discrete-time autoregressive Markov process, and at each time decides whether or not to transmit its observations to a remote estimator using an unreliable wireless communication channel after encoding these observations into data packets. Modeling the communication channel as a Gilbert-Elliot channel allows us to take into account the temporal correlations in its fading. We pose this dynamic optimization problem as a Markov decision process (MDP), and show that there exists an optimal policy that has a threshold structure, i.e., at each time t it transmits only when the current channel state is good, and the magnitude of the current “error” exceeds a certain threshold.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3099-3104"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10812990/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a remote estimation setup, where data packets containing sensor observations are transmitted over a Gilbert-Elliot channel to a remote estimator, and design scheduling policies that minimize a risk-sensitive cost, which is equal to the expected value of the exponential of the cumulative cost incurred during a finite horizon, that is the sum of the cumulative transmission power consumed, and the cumulative squared estimation error. More specifically, consider a sensor that observes a discrete-time autoregressive Markov process, and at each time decides whether or not to transmit its observations to a remote estimator using an unreliable wireless communication channel after encoding these observations into data packets. Modeling the communication channel as a Gilbert-Elliot channel allows us to take into account the temporal correlations in its fading. We pose this dynamic optimization problem as a Markov decision process (MDP), and show that there exists an optimal policy that has a threshold structure, i.e., at each time t it transmits only when the current channel state is good, and the magnitude of the current “error” exceeds a certain threshold.
自回归马尔可夫过程远程估计最优风险敏感调度策略
我们考虑了一个远程估计设置,其中包含传感器观测的数据包通过吉尔伯特-艾略特信道传输到远程估计器,并设计了最小化风险敏感成本的调度策略,该策略等于在有限范围内产生的累积成本指数的期望值,即累积传输功率消耗和累积平方估计误差的总和。更具体地说,考虑一个观察离散时间自回归马尔可夫过程的传感器,每次在将这些观察结果编码成数据包后,决定是否使用不可靠的无线通信信道将其观察结果传输给远程估计器。将通信信道建模为吉尔伯特-艾略特信道允许我们考虑其衰落中的时间相关性。我们将这一动态优化问题作为马尔可夫决策过程(MDP),并证明存在一个具有阈值结构的最优策略,即在每次t时刻,只有当当前信道状态良好,且当前“误差”的大小超过某一阈值时才进行传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信