A Stand-Alone Surrogate Model for Predicting Protection Heater Delays in Nb3Sn Accelerator Magnets

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shahriar Bakrani Balani;H. Milanchian;T. Salmi
{"title":"A Stand-Alone Surrogate Model for Predicting Protection Heater Delays in Nb3Sn Accelerator Magnets","authors":"Shahriar Bakrani Balani;H. Milanchian;T. Salmi","doi":"10.1109/TASC.2024.3523873","DOIUrl":null,"url":null,"abstract":"Quench is an irreversible transition where the magnet locally loses its superconducting properties and becomes resistive. Early quench detection and a prompt protection system response are essential to avoid conductor damage. One of the conventional methods for accelerator magnet quench protection is to place resistive heaters on the surface of the coils. The protection heaters are stainless steel strips which are powered with a voltage pulse from capacitor bank discharge. Current is passing through the heaters, generating heat due to the resistivity of the stainless steel. Heat is transferred to the cable by conduction. There is at least one layer of polyimide film and the cable insulation (impregnated glass fiber) between the heater and the superconducting cable. Heater delay is defined as the required time to reach the current sharing temperature in the cable after heater firing. Typically predicting the heater delay requires numerical simulations which are computationally somewhat challenging and require expertise and need of specific software. In this study, we are providing a fast and easily accessible surrogate model for predicting the heater delay in Nb\n<sub>3</sub>\nSn magnets. Finite Element Method simulations with COMSOL Multiphysics are used for collecting the dataset and training a supervised artificial neural network algorithm. The model can be used for first estimations of heater delay in Nb\n<sub>3</sub>\nSn accelerator magnets during their design phase. In future, the surrogate model could be also integrated with other quench protection design tools to accelerate the detailed protection design of future magnets.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-6"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818393","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10818393/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Quench is an irreversible transition where the magnet locally loses its superconducting properties and becomes resistive. Early quench detection and a prompt protection system response are essential to avoid conductor damage. One of the conventional methods for accelerator magnet quench protection is to place resistive heaters on the surface of the coils. The protection heaters are stainless steel strips which are powered with a voltage pulse from capacitor bank discharge. Current is passing through the heaters, generating heat due to the resistivity of the stainless steel. Heat is transferred to the cable by conduction. There is at least one layer of polyimide film and the cable insulation (impregnated glass fiber) between the heater and the superconducting cable. Heater delay is defined as the required time to reach the current sharing temperature in the cable after heater firing. Typically predicting the heater delay requires numerical simulations which are computationally somewhat challenging and require expertise and need of specific software. In this study, we are providing a fast and easily accessible surrogate model for predicting the heater delay in Nb 3 Sn magnets. Finite Element Method simulations with COMSOL Multiphysics are used for collecting the dataset and training a supervised artificial neural network algorithm. The model can be used for first estimations of heater delay in Nb 3 Sn accelerator magnets during their design phase. In future, the surrogate model could be also integrated with other quench protection design tools to accelerate the detailed protection design of future magnets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信