Yifei Qiu , Jingyu Niu , Chuchu Zhang , Long Chen , Bo Su , Shenglu Zhou
{"title":"Interpretable machine learning reveals transport of aged microplastics in porous media: Multiple factors co-effect","authors":"Yifei Qiu , Jingyu Niu , Chuchu Zhang , Long Chen , Bo Su , Shenglu Zhou","doi":"10.1016/j.watres.2025.123129","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MPs) easily migrate into deeper soil layers, posing potential risks to subterranean habitats and groundwater. However, the mechanisms governing the vertical migration of MPs in soil, particularly aged MPs, remain unclear. In this study, we investigate the transport of MPs under varying MPs properties, soil texture and hydrology conditions. Under nearly all controlled conditions, aged MPs demonstrated a higher vertical mobility compared to virgin MPs. By employing interpretable machine learning models (IML), we not only identified the dominant role of individual parameters in the vertical migration of MPs but also discovered that the increased contribution of carbonyl index and O/C ratio in aged MPs, along with the enhanced interaction with other feature parameters, collectively promotes the elevated vertical mobility of aged MPs. The varying contributions of different feature parameters under individual control variables revealed the mechanisms of MPs vertical migration under different gradients and highlighted the dual constraints of physical obstruction and chemical retention between MPs and soil particles. The established machine learning model was also utilized to predict the differences in vertical mobilities of MPs with varying degrees of aging. The nonlinear increasing relationship between MPs vertical mobility and simulated aging time suggests that MPs can migrate to deeper soil layers shortly after entering the soil environment. The integration of laboratory experiment with IML elucidates the key drivers of vertical MP migration. It also provides a theoretical basis for the timely removal of MPs from soil and the assessment of their potential risks.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"274 ","pages":"Article 123129"},"PeriodicalIF":12.4000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425000430","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) easily migrate into deeper soil layers, posing potential risks to subterranean habitats and groundwater. However, the mechanisms governing the vertical migration of MPs in soil, particularly aged MPs, remain unclear. In this study, we investigate the transport of MPs under varying MPs properties, soil texture and hydrology conditions. Under nearly all controlled conditions, aged MPs demonstrated a higher vertical mobility compared to virgin MPs. By employing interpretable machine learning models (IML), we not only identified the dominant role of individual parameters in the vertical migration of MPs but also discovered that the increased contribution of carbonyl index and O/C ratio in aged MPs, along with the enhanced interaction with other feature parameters, collectively promotes the elevated vertical mobility of aged MPs. The varying contributions of different feature parameters under individual control variables revealed the mechanisms of MPs vertical migration under different gradients and highlighted the dual constraints of physical obstruction and chemical retention between MPs and soil particles. The established machine learning model was also utilized to predict the differences in vertical mobilities of MPs with varying degrees of aging. The nonlinear increasing relationship between MPs vertical mobility and simulated aging time suggests that MPs can migrate to deeper soil layers shortly after entering the soil environment. The integration of laboratory experiment with IML elucidates the key drivers of vertical MP migration. It also provides a theoretical basis for the timely removal of MPs from soil and the assessment of their potential risks.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.