metaGE: Investigating genotype x environment interactions through GWAS meta-analysis.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
Annaïg De Walsche, Alexis Vergne, Renaud Rincent, Fabrice Roux, Stéphane Nicolas, Claude Welcker, Sofiane Mezmouk, Alain Charcosset, Tristan Mary-Huard
{"title":"metaGE: Investigating genotype x environment interactions through GWAS meta-analysis.","authors":"Annaïg De Walsche, Alexis Vergne, Renaud Rincent, Fabrice Roux, Stéphane Nicolas, Claude Welcker, Sofiane Mezmouk, Alain Charcosset, Tristan Mary-Huard","doi":"10.1371/journal.pgen.1011553","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments. In this context, we introduce metaGE, a flexible and computationally efficient meta-analysis approach for jointly analyzing single-environment GWAS of any MET experiment. The metaGE procedure accounts for the heterogeneity of quantitative trait loci (QTL) effects across the environmental conditions and allows the detection of QTL whose allelic effect variations are strongly correlated to environmental cofactors. We evaluated the performance of the proposed methodology and compared it to two competing procedures through simulations. We also applied metaGE to two emblematic examples: the detection of flowering QTLs whose effects are modulated by competition in Arabidopsis and the detection of yield QTLs impacted by drought stresses in maize. The procedure identified known and new QTLs, providing valuable insights into the genetic architecture of complex traits and QTL effects dependent on environmental stress conditions. The whole statistical approach is available as an R package.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011553"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011553","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments. In this context, we introduce metaGE, a flexible and computationally efficient meta-analysis approach for jointly analyzing single-environment GWAS of any MET experiment. The metaGE procedure accounts for the heterogeneity of quantitative trait loci (QTL) effects across the environmental conditions and allows the detection of QTL whose allelic effect variations are strongly correlated to environmental cofactors. We evaluated the performance of the proposed methodology and compared it to two competing procedures through simulations. We also applied metaGE to two emblematic examples: the detection of flowering QTLs whose effects are modulated by competition in Arabidopsis and the detection of yield QTLs impacted by drought stresses in maize. The procedure identified known and new QTLs, providing valuable insights into the genetic architecture of complex traits and QTL effects dependent on environmental stress conditions. The whole statistical approach is available as an R package.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信