{"title":"Investigating the Immunogenic Properties of a Mutagenized NS3/4A-Based HCV Genotype 3a DNA Vaccine.","authors":"Palatip Chutoam, Kanokporn Srisucharitpanit, Uraiwan Intamaso","doi":"10.1089/vim.2024.0063","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic hepatitis C virus (HCV) infection poses a major health risk worldwide, with patients susceptible to liver cirrhosis and hepatocellular carcinoma. This study focuses on the development of effective therapeutic strategies for HCV infection through the investigation of immunogenic properties of a DNA construct based on the NS3/4A gene of HCV genotype (g)3a. Gene expression of the mutagenized (mut) NS3/4A target genes was assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Additionally, bioinformatics tools were employed to evaluate the impact of the mut-NS3/4A-based DNA vaccine. Analysis revealed increased mut-NS3/4A mRNA levels and target protein abundance compared with the native sequence. Elevated mut-NS3/NS4A levels could result from increased RNA stability and proper protein folding. Physicochemical analyses of the protein demonstrated favorable attributes such as thermostability and solubility. Three-dimensional mut-NS3/4A protein modeling confirmed its high stability and agreement with known protein structures. Additionally, potential immunogenic regions of both T and B cell epitopes were discovered based on peptide binding to major histocompatibility complex molecules of Asian origin. Importantly, these epitopes exhibited nonallergenic and nontoxic characteristics. These findings highlight the potential of the NS3/4A-based DNA construct as a promising candidate for an HCVg3a vaccine tailored for the Asian population, providing valuable insights for future immunotherapeutic approaches.</p>","PeriodicalId":23665,"journal":{"name":"Viral immunology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viral immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vim.2024.0063","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic hepatitis C virus (HCV) infection poses a major health risk worldwide, with patients susceptible to liver cirrhosis and hepatocellular carcinoma. This study focuses on the development of effective therapeutic strategies for HCV infection through the investigation of immunogenic properties of a DNA construct based on the NS3/4A gene of HCV genotype (g)3a. Gene expression of the mutagenized (mut) NS3/4A target genes was assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Additionally, bioinformatics tools were employed to evaluate the impact of the mut-NS3/4A-based DNA vaccine. Analysis revealed increased mut-NS3/4A mRNA levels and target protein abundance compared with the native sequence. Elevated mut-NS3/NS4A levels could result from increased RNA stability and proper protein folding. Physicochemical analyses of the protein demonstrated favorable attributes such as thermostability and solubility. Three-dimensional mut-NS3/4A protein modeling confirmed its high stability and agreement with known protein structures. Additionally, potential immunogenic regions of both T and B cell epitopes were discovered based on peptide binding to major histocompatibility complex molecules of Asian origin. Importantly, these epitopes exhibited nonallergenic and nontoxic characteristics. These findings highlight the potential of the NS3/4A-based DNA construct as a promising candidate for an HCVg3a vaccine tailored for the Asian population, providing valuable insights for future immunotherapeutic approaches.
期刊介绍:
Viral Immunology delivers cutting-edge peer-reviewed research on rare, emerging, and under-studied viruses, with special focus on analyzing mutual relationships between external viruses and internal immunity. Original research, reviews, and commentaries on relevant viruses are presented in clinical, translational, and basic science articles for researchers in multiple disciplines.
Viral Immunology coverage includes:
Human and animal viral immunology
Research and development of viral vaccines, including field trials
Immunological characterization of viral components
Virus-based immunological diseases, including autoimmune syndromes
Pathogenic mechanisms
Viral diagnostics
Tumor and cancer immunology with virus as the primary factor
Viral immunology methods.