Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-01-20 Epub Date: 2025-01-06 DOI:10.1016/j.cub.2024.11.069
Suzanne O Nolan, Patrick R Melugin, Kirsty R Erickson, Wilson R Adams, Zahra Z Farahbakhsh, Colleen E Mcgonigle, Michelle H Kwon, Vincent D Costa, Troy A Hackett, Verginia C Cuzon Carlson, Christos Constantinidis, Christopher C Lapish, Kathleen A Grant, Cody A Siciliano
{"title":"Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits.","authors":"Suzanne O Nolan, Patrick R Melugin, Kirsty R Erickson, Wilson R Adams, Zahra Z Farahbakhsh, Colleen E Mcgonigle, Michelle H Kwon, Vincent D Costa, Troy A Hackett, Verginia C Cuzon Carlson, Christos Constantinidis, Christopher C Lapish, Kathleen A Grant, Cody A Siciliano","doi":"10.1016/j.cub.2024.11.069","DOIUrl":null,"url":null,"abstract":"<p><p>Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions.<sup>1</sup><sup>,</sup><sup>2</sup> It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes.<sup>3</sup><sup>,</sup><sup>4</sup><sup>,</sup><sup>5</sup><sup>,</sup><sup>6</sup><sup>,</sup><sup>7</sup> In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the \"canonical\" cortical microcircuit.<sup>3</sup><sup>,</sup><sup>8</sup> Each cortical microcircuit receives sensory and cognitive information from upstream sources, which are represented by sustained activity within the microcircuit, referred to as persistent or recurrent activity.<sup>4</sup><sup>,</sup><sup>9</sup> Via recurrent connections within the microcircuit, activity propagates for a variable length of time, thereby allowing temporary storage and computations to occur locally before ultimately passing a transformed representation to a downstream output.<sup>4</sup><sup>,</sup><sup>5</sup><sup>,</sup><sup>10</sup> Competing theories regarding how microcircuit activity is coordinated have proven difficult to reconcile in vivo, where intercortical and intracortical computations cannot be fully dissociated.<sup>5</sup><sup>,</sup><sup>9</sup><sup>,</sup><sup>11</sup><sup>,</sup><sup>12</sup> Here, using high-density calcium imaging of macaque dlPFC, we isolated intracortical computations by interrogating microcircuit networks ex vivo. Using peri-sulcal stimulation to evoke recurrent activity in deep layers, we found that activity propagates through stochastically assembled intracortical networks wherein orderly, predictable, low-dimensional collective dynamics arise from ensembles with highly labile cellular memberships. Microcircuit excitability covaried with individual cognitive performance, thus anchoring heuristic models of abstract cortical functions within quantifiable constraints imposed by the underlying synaptic architecture. Our findings argue against engram or localist architectures, together demonstrating that generation of high-fidelity population-level signals from distributed, labile networks is an intrinsic feature of dlPFC microcircuitry.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"431-443.e4"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.11.069","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions.1,2 It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes.3,4,5,6,7 In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit.3,8 Each cortical microcircuit receives sensory and cognitive information from upstream sources, which are represented by sustained activity within the microcircuit, referred to as persistent or recurrent activity.4,9 Via recurrent connections within the microcircuit, activity propagates for a variable length of time, thereby allowing temporary storage and computations to occur locally before ultimately passing a transformed representation to a downstream output.4,5,10 Competing theories regarding how microcircuit activity is coordinated have proven difficult to reconcile in vivo, where intercortical and intracortical computations cannot be fully dissociated.5,9,11,12 Here, using high-density calcium imaging of macaque dlPFC, we isolated intracortical computations by interrogating microcircuit networks ex vivo. Using peri-sulcal stimulation to evoke recurrent activity in deep layers, we found that activity propagates through stochastically assembled intracortical networks wherein orderly, predictable, low-dimensional collective dynamics arise from ensembles with highly labile cellular memberships. Microcircuit excitability covaried with individual cognitive performance, thus anchoring heuristic models of abstract cortical functions within quantifiable constraints imposed by the underlying synaptic architecture. Our findings argue against engram or localist architectures, together demonstrating that generation of high-fidelity population-level signals from distributed, labile networks is an intrinsic feature of dlPFC microcircuitry.

反复活动通过猕猴背外侧前额微回路的不稳定集合传播。
人类和非人类灵长类动物的研究清楚地表明,背外侧前额叶皮层(dlPFC)对高级认知功能至关重要。1,2据认为,dlPFC内的皮质内突触结构是导致这些过程的完整的神经生物学基础。3,4,5,6,7在流行的模型中,每个皮质柱构成一个基本处理单元,由密集的内在连接组成,概念化为“规范”皮质微电路。每个皮层微回路接收来自上游来源的感觉和认知信息,这些信息由微回路内的持续活动表示,称为持续或反复活动。通过微电路内的循环连接,活动传播可变长度的时间,从而允许在最终将转换后的表示传递到下游输出之前在本地进行临时存储和计算。4,5,10关于微电路活动如何协调的相互竞争的理论已被证明难以在体内调和,在体内,皮质间和皮质内的计算不能完全分离。5,9,11,12在这里,我们使用猕猴dlPFC的高密度钙成像,通过询问体外微电路网络分离皮质内计算。利用脑沟周围刺激唤起深层的循环活动,我们发现活动通过随机组装的皮层内网络传播,其中有序的、可预测的、低维的集体动态产生于具有高度不稳定细胞成员的集合。微电路兴奋性与个体认知表现共同变化,因此在潜在突触结构施加的可量化约束下锚定抽象皮层功能的启发式模型。我们的研究结果反对印痕或局部架构,共同证明了从分布的、不稳定的网络中产生高保真的种群水平信号是dlPFC微电路的内在特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信