Quantitative prediction of toxicological points of departure using two-stage machine learning models: A new approach methodology (NAM) for chemical risk assessment

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Vaisali Chandrasekar , Syed Mohammad , Omar Aboumarzouk , Ajay Vikram Singh , Sarada Prasad Dakua
{"title":"Quantitative prediction of toxicological points of departure using two-stage machine learning models: A new approach methodology (NAM) for chemical risk assessment","authors":"Vaisali Chandrasekar ,&nbsp;Syed Mohammad ,&nbsp;Omar Aboumarzouk ,&nbsp;Ajay Vikram Singh ,&nbsp;Sarada Prasad Dakua","doi":"10.1016/j.jhazmat.2024.137071","DOIUrl":null,"url":null,"abstract":"<div><div>Point of departure (POD) is a concept used in risk assessment to calculate the reference dose of exposure that is likely to have no appreciable risk on health. POD can be directly utilized from no observed adverse effect levels (NOAEL) which is the dose or exposure level at which there is little or no risk of adverse effects. However, NOAEL values are unavailable for most of the chemicals due to inconsistent animal toxicity data. Hence, the current study utilizes a two-stage machine learning (ML) model for predicting NOAEL values, based on data curated from diverse toxicity exposures. In the first stage, a random forest regressor is used for supervised outlier detection and removal addressing any variability in data and poor correlations. The refined data is then used for toxicity prediction using several ML models; random forest and XGBoost show relatively higher performance with an R<sup>2</sup> value of 0.4 and 0.43, respectively, for predicting NOAEL in chronic toxicity. Similarly, feature combinations with absorption distribution metabolism and excretion (ADME) indicate better NOAEL prediction for acute toxicity. External validation is performed by predicting NOAEL values for cosmetic pigments and calculating reference doses (RfD). Notably, pigments like orange and red show higher RfD values, indicating broader safety margins. This study provides a practical framework for addressing variability and data limitations in toxicity prediction while offering insights into its applicability in risk evaluation.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"487 ","pages":"Article 137071"},"PeriodicalIF":11.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424036525","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Point of departure (POD) is a concept used in risk assessment to calculate the reference dose of exposure that is likely to have no appreciable risk on health. POD can be directly utilized from no observed adverse effect levels (NOAEL) which is the dose or exposure level at which there is little or no risk of adverse effects. However, NOAEL values are unavailable for most of the chemicals due to inconsistent animal toxicity data. Hence, the current study utilizes a two-stage machine learning (ML) model for predicting NOAEL values, based on data curated from diverse toxicity exposures. In the first stage, a random forest regressor is used for supervised outlier detection and removal addressing any variability in data and poor correlations. The refined data is then used for toxicity prediction using several ML models; random forest and XGBoost show relatively higher performance with an R2 value of 0.4 and 0.43, respectively, for predicting NOAEL in chronic toxicity. Similarly, feature combinations with absorption distribution metabolism and excretion (ADME) indicate better NOAEL prediction for acute toxicity. External validation is performed by predicting NOAEL values for cosmetic pigments and calculating reference doses (RfD). Notably, pigments like orange and red show higher RfD values, indicating broader safety margins. This study provides a practical framework for addressing variability and data limitations in toxicity prediction while offering insights into its applicability in risk evaluation.
使用两阶段机器学习模型的毒理学起点定量预测:一种新的化学风险评估方法(NAM)
出发点(POD)是风险评估中使用的一个概念,用于计算可能对…没有明显风险的参考照射剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信