Quantitative prediction of toxicological points of departure using two-stage machine learning models: A new approach methodology (NAM) for chemical risk assessment
{"title":"Quantitative prediction of toxicological points of departure using two-stage machine learning models: A new approach methodology (NAM) for chemical risk assessment","authors":"Vaisali Chandrasekar , Syed Mohammad , Omar Aboumarzouk , Ajay Vikram Singh , Sarada Prasad Dakua","doi":"10.1016/j.jhazmat.2024.137071","DOIUrl":null,"url":null,"abstract":"<div><div>Point of departure (POD) is a concept used in risk assessment to calculate the reference dose of exposure that is likely to have no appreciable risk on health. POD can be directly utilized from no observed adverse effect levels (NOAEL) which is the dose or exposure level at which there is little or no risk of adverse effects. However, NOAEL values are unavailable for most of the chemicals due to inconsistent animal toxicity data. Hence, the current study utilizes a two-stage machine learning (ML) model for predicting NOAEL values, based on data curated from diverse toxicity exposures. In the first stage, a random forest regressor is used for supervised outlier detection and removal addressing any variability in data and poor correlations. The refined data is then used for toxicity prediction using several ML models; random forest and XGBoost show relatively higher performance with an R<sup>2</sup> value of 0.4 and 0.43, respectively, for predicting NOAEL in chronic toxicity. Similarly, feature combinations with absorption distribution metabolism and excretion (ADME) indicate better NOAEL prediction for acute toxicity. External validation is performed by predicting NOAEL values for cosmetic pigments and calculating reference doses (RfD). Notably, pigments like orange and red show higher RfD values, indicating broader safety margins. This study provides a practical framework for addressing variability and data limitations in toxicity prediction while offering insights into its applicability in risk evaluation.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"487 ","pages":"Article 137071"},"PeriodicalIF":11.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424036525","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Point of departure (POD) is a concept used in risk assessment to calculate the reference dose of exposure that is likely to have no appreciable risk on health. POD can be directly utilized from no observed adverse effect levels (NOAEL) which is the dose or exposure level at which there is little or no risk of adverse effects. However, NOAEL values are unavailable for most of the chemicals due to inconsistent animal toxicity data. Hence, the current study utilizes a two-stage machine learning (ML) model for predicting NOAEL values, based on data curated from diverse toxicity exposures. In the first stage, a random forest regressor is used for supervised outlier detection and removal addressing any variability in data and poor correlations. The refined data is then used for toxicity prediction using several ML models; random forest and XGBoost show relatively higher performance with an R2 value of 0.4 and 0.43, respectively, for predicting NOAEL in chronic toxicity. Similarly, feature combinations with absorption distribution metabolism and excretion (ADME) indicate better NOAEL prediction for acute toxicity. External validation is performed by predicting NOAEL values for cosmetic pigments and calculating reference doses (RfD). Notably, pigments like orange and red show higher RfD values, indicating broader safety margins. This study provides a practical framework for addressing variability and data limitations in toxicity prediction while offering insights into its applicability in risk evaluation.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.