Multi-Site High-Entropy Immobilizer for All-Iodine Species Fixation in High-Performance Zinc-Iodine Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanxin Li, Hongfeng Jia, Yuehan Hao, Usman Ali, Bingqiu Liu, Lingyu Zhang, Lu Li, Ruqian Lian, Chungang Wang
{"title":"Multi-Site High-Entropy Immobilizer for All-Iodine Species Fixation in High-Performance Zinc-Iodine Batteries","authors":"Yanxin Li,&nbsp;Hongfeng Jia,&nbsp;Yuehan Hao,&nbsp;Usman Ali,&nbsp;Bingqiu Liu,&nbsp;Lingyu Zhang,&nbsp;Lu Li,&nbsp;Ruqian Lian,&nbsp;Chungang Wang","doi":"10.1002/adfm.202419821","DOIUrl":null,"url":null,"abstract":"<p>Zinc-iodine (Zn-I<sub>2</sub>) batteries are of great interest thanks to their high energy density, low cost, and inherent safety. However, the dissolution of I<sup>−</sup> and the generated polyiodides exacerbated by the dissolved I<sup>−</sup> severely reduces the utilization of the active substance, resulting in poor coulombic efficiency and a drastic decrease in performance. In this regard, chemical immobilization of iodine species with high-entropy material is developed. Benefiting from the remarkable catalytic and anchoring activity of the high-entropy material, accelerated catalytic conversion and chemisorption of polyiodides are realized. Meanwhile, the distribution characteristics of the multi-active adsorption centers on the high-entropy material enable the abundant active sites to anchor the highly soluble and hard-to-mobilize I<sup>−</sup> in a chemical bonding manner. Such a unique bonding mode allows all iodine species (I<sub>2</sub>/I<sup>−</sup>/I<sub>3</sub><sup>−</sup>) to be firmly immobilized on the electrode, which enhances the effectiveness and utilization of rechargeable Zn-I<sub>2</sub> batteries. High-entropy material with the ability to immobilize all species of iodine provides a novel/effective strategy for realizing high-performance Zn-I<sub>2</sub> batteries.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 20","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202419821","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-iodine (Zn-I2) batteries are of great interest thanks to their high energy density, low cost, and inherent safety. However, the dissolution of I and the generated polyiodides exacerbated by the dissolved I severely reduces the utilization of the active substance, resulting in poor coulombic efficiency and a drastic decrease in performance. In this regard, chemical immobilization of iodine species with high-entropy material is developed. Benefiting from the remarkable catalytic and anchoring activity of the high-entropy material, accelerated catalytic conversion and chemisorption of polyiodides are realized. Meanwhile, the distribution characteristics of the multi-active adsorption centers on the high-entropy material enable the abundant active sites to anchor the highly soluble and hard-to-mobilize I in a chemical bonding manner. Such a unique bonding mode allows all iodine species (I2/I/I3) to be firmly immobilized on the electrode, which enhances the effectiveness and utilization of rechargeable Zn-I2 batteries. High-entropy material with the ability to immobilize all species of iodine provides a novel/effective strategy for realizing high-performance Zn-I2 batteries.

Abstract Image

Abstract Image

高性能锌碘电池全碘种固定的多位点高熵固定化剂
锌碘(Zn-I2)电池因其高能量密度、低成本和固有的安全性而备受关注。然而,I -的溶解以及被溶解的I -加剧的多碘化物的生成严重降低了活性物质的利用率,导致库仑效率差,性能急剧下降。在此基础上,研究了高熵材料对碘的化学固定化。利用高熵材料显著的催化和锚定活性,实现了多碘化物的加速催化转化和化学吸附。同时,多活性吸附中心在高熵材料上的分布特点使得丰富的活性位点能够以化学键的方式固定高溶性和难以调动的I -。这种独特的键合模式使得所有的碘离子(I2/I−/I3−)都能牢固地固定在电极上,从而提高了可充电锌-I2电池的效率和利用率。高熵材料具有固定所有种类碘的能力,为实现高性能Zn-I2电池提供了一种新颖/有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信